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SOMMARIO

L’analisi del segnale di variabilità cardiaca è diventata strumento sempre più im-
piegato nel processo di diagnosi di disturbi cardiaci. Un recente contributo, [Task
Force, 1996], ha tentato di standardizzare le metodiche di utilizzo dei più comuni
strumenti di indagine nel dominio del tempo e delle frequenze. Ancora molto da
fare rimane, invece, nell’ambito dei parametri nonlineari.

Molte nonlinearità sono sicuramente in gioco nel sistema di controllo cardiova-
scolare, ma se esse producano o meno una modulazione apprezzabile (e rilevabile)
nella serie RR è questione tuttora dibattuta.

Un contributo in questo senso è dato nel lavoro di tesi, dall’applicazione del
metodo delle funzioni di struttura generalizzate per il calcolo dello spettro multifrat-
tale delle serie RR. Uno spettro multifrattale decrescente è indice di correlazioni a
lungo termine nel segnale e di una possibile natura nonlineare del processo gene-
rante. L’analisi è stata eseguita sui dati raccolti dalla multicentrica Noltisalis;
si è verificato che per tutte le 50 serie RR nel database, lo spettro degli esponenti
è decrescente e che, in 32 casi su 50, è significativamente diverso da quello otte-
nuto surrogando le serie originali attraverso il metodo “amplitude adjusted Fourier
transform”. Si ritiene però che il basso valore degli esponenti stessi non permetta
di concludere univocamente che il segnale RR sia di natura nonlineare; l’effetto di
eventuali non stazionarietà, esterne al sistema, va ulteriormente investigato. Un
passo in questa direzione è stata l’applicazione del metodo “wavelet transform mo-
dulus maxima” che, sfruttando le proprietà delle wavelet di eliminare andamenti
polinomiali, tenta di ridurre la non stazionarietà.

Gli esponenti multifrattali hq si sono inoltre rivelati uno strumento molto effica-
ce per distinguere la popolazione dei soggetti sani da quelle delle differenti patologie.
Nella tesi questi parametri sono confrontati con molti altri indici, nel dominio del
tempo, geometrici e monofrattali (esponente α dello spettro, parametri della “detren-
ded fluctuation analysis”), in base alla significatività della differenza delle medie.
Gli esponenti multifrattali sono risultati essere i migliori.

Al fine di sviluppare concrete applicazioni diagnostiche, diventa interessante un
approccio multiparametrico al problema della classificazione di un soggetto all’inter-
no di una serie di possibili popolazioni patologiche. Nell’analisi multiparametrica,
invece di un solo indice, se ne considera un gruppo, sfruttando le caratteristiche di
ciascuno e trasformando il problema da mono a multidimensionale.

Diversi tipi di classificatori sono stati sperimentati su una popolazione di 362
registrazioni cardiotocografiche di frequenza cardiaca fetale (FHR); i 50 soggetti del
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database Noltisalis non sono infatti numericamente sufficienti per una corretta
valutazione statistica. Si è verificato che, utilizzando una rete neurale, avente in
ingresso 5 parametri (accelerazioni grandi e piccole, Long Term Irregularity [LTI],
rapporto spettrale [LF/(MF+HF)] e entropia approssimata) l’80% delle serie è as-
segnata correttamente alla popolazione di appartenenza (dati validati attraverso una
“7-fold cross validation”; i feti sono stati distinti in “normali” e “potenzialmente pa-
tologici” in base alla diagnosi stilata alla nascita dal medico attraverso i tradizionali
parametri clinici).

L’approccio multiparametrico è complementare a quello multifrattale. Entram-
bi esplorano due delle direzioni significative in cui si sta muovendo la ricerca sul
segnale HRV.



ABSTRACT

Heart rate variability signal analysis has became a widely employed tool in the di-
agnosis process of cardiovascular diseases. A recent study, [Task Force, 1996], at-
tempted a standardization of the methods which are more widely employed, both
in time and frequency domains. On the other side, it is recognized that further
investigations are still necessary in the field of nonlinear parameters.

Certainly, several nonlinearities play a role in the cardiovascular control system,
but it is not clear yet if they induce a significative (and detectable) modulation of
the RR series.

A contribution in this direction is given in the thesis, by the computation of
the multifractal spectrum of the RR signal through generalized structure functions.
A decreasing multifractal spectrum indicates long term correlations in the signal
and contributes an index of a possible nonlinear nature of the generating process.
The analysis was performed on the data collected by the Noltisalis multicentric
research program; it was verified that the multifractal spectrum was decreasing for
each of the 50 series in the database. In 32 cases it was significatively different from
the spectrum of the surrogate data obtained through the amplitude adjusted Fourier
transform method. The exponents were retained too small in absolute value to uni-
vocally conclude that the RR signal has a nonlinear nature. To further verify the
non-stationarity influence, we also applied the wavelet-transform modulus-maxima
method, which should eliminate polynomial trends from the data.

Multifractal exponent proved to be a very effective tool in discriminating the pop-
ulation of healthy subjects from the four pathological ones. In the thesis, they have
been compared with several other indexes: time domain, geometrical and monofrac-
tal parameters (α spectrum exponent, detrended fluctuation analysis). Multifractal
exponent performed better than any other index.

To develop actual diagnostic applications, a multivariate approach to classifica-
tion is also considered. In multivariate analysis a set of parameters is employed to
allocate a subject in one out of several possible diagnostic groups. The classification
problem becomes multidimensional.

Several supervised classifiers have been tested on a population of 362 fetal heart
rate (FHR) cardiotocographical recordings (the series in Noltisalis database were
not numerically sufficient to ensure a correct statistical validation). The fetuses
were divided in two groups: “normal” and “potentially pathological” according to the
physician statement at delivery, which based on traditional clinical parameters. We
verified that employing a feed-forward neural network and five input-indexes (large
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and small accelerations, Long Term Irregularity [LTI], spectral ratio [LF/(MF+HF)]
and approximate entropy) 80% of the cases were allocated to correct group (a 7-fold
cross validation was used).

Multivariate and multifractal approaches are complementary. Both explore two
interesting directions towards which HRV research is moving.
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INTRODUCTION

Research on heart rate variability (HRV) started several decades ago. IN
recent years, new methods, for the analysis of time series, allowed to un-
derstand new characteristics of the RR signal (being the most commonly
used signal of HRV, detected as the successive values of RR interval - the
instantaneous heart cycle) and, therefore, of the cardiovascular system. Si-
multaneously, the same numerical procedures started to be employed in the
diagnostic process and their importance has always increased. Parametric
spectrum analysis was, probably, one of the biggest improvements of the
last two decades. As it permits an indirect but reliable measure of the auto-
nomic activities in a very simple and elegant manner, it shares now a great
popularity among researchers and physicians.

At the begin of the ’80s, largely due to the introduction of methods like
Grassberger and Procaccia’s correlation dimension and entropy (K2) [1983b;
1983a], the study of deterministic chaos underwent a transition from purely
theoretical results to the quantitative determination of chaotic effects in ex-
perimental data. Then, by analyzing time series, coming from a large range
of natural or biological systems, several researchers reported evidences of
low-dimensional chaos. These studies supported the hypothesis that unpre-
dictable patterns, shown by the signals, were produced by low-order dynami-
cal systems and not by stochastic effects. But when, finally, a few tests (e.g.,
surrogate data) meant to verify the consistence of non-linear indexes became
available, most of the previous claims were disproved. Starting from the work
of Osborne and Provenzale [1989], the scientific community developed the
belief that non-linear time series methods must be trusted only when applied
to controlled natural or laboratory systems for which reasonable models are
known. In all the other cases, they are still important hints on the structure
of the system but appropriate tests should be always performed to get a
correct interpretation of the data.

The cardiovascular system is a complex mechanism, where several nonlin-
ear mechanisms are accounted for; but the fact that a given system includes
nonlinear components does not necessarily implies that the nonlinearities are
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also contained in a specific signal measured from it. The quest for the nonlin-
ear nature of the RR series started with the work of Goldberger et al. [1990],
and a large literature developed subsequently. The “all chaotic” paradigm
took over the previous “all stochastic” (or “pseudo-stochastic”) belief. When
the first tests became popular a bit of criticism developed around the diffused
evidence of nonlinearity, previously registered. Nevertheless the work went
on and more methods were proposed and applied. Many groups belonging
to experimental fields like biology, chemistry and engineering contributed to
these researches. Even inside the Biomedical Engineering Department in Mi-
lan, nonlinear time series analysis were performed along this direction, thus
considering the hypothesis that cardiovascular regulation could be controlled
both by linear and nonlinear mechanisms.

In 1996, a ESC1 and NASPE2 joint effort lead to a first standardization
of HRV’s analysis, which fixed several procedures to be used with classical
time domain and frequency domain methods. The Task Force acknowledged
nonlinear methods as “potential tools for HRV assessment”, but stated also
that advances in the interpretation of the results of these methods were
necessary and highly recommended.

This thesis is meant to study the mechanisms underlying heart rate vari-
ability. The employed tools are time series methods and the analysis is
conducted on RR signals. Quite a classical framework! It might be surpris-
ing, that a problem, stated so long ago and with so many published related
papers, is now the topic of a Ph.D. thesis, which should be innovative by
definition. The original contribution lies in its complete change of perspec-
tive. Usually, methods have been the key point; here, even if we employed
several of them, the focus is on the mechanisms, which generate variability,
and on their footprints, “impressed” on the RR signal.

We made just few initially physiological assumptions, not to be condi-
tioned by prejudices. The main one was that there are many biological mech-
anisms, acting on HRV on different timescales, both in the cardiovascular
control system (e.g., vagally-mediated respiratory influences and baroceptor
modulation of sinus-node activity) and in the whole body (e.g., humoral fac-
tor, hormonal systems, posture, activity level, meals, sleep-wake cycle and
circadian rhythm). Then we try to address two main general issues.

The first one is correlated to the investigation of the possible non-linear
nature of the HRV signal, on long time scale (≈ 24 hours). Is there any
statistical significant evidence of a multifractal spectrum in the RR series?

1 European Society of Cardiology
2 North American Society of Pacing and Electrophysiology
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It sounds ambitious to face such a long querelle, which many researchers
struggled with. Certainly we did not claim we solved it; nevertheless, we
think the work here presented may be a useful contribution to the topic.
Besides, the new information, collected on the behaviour of the cardiovas-
cular system, might be a useful basis for constructing a new model of the
generating mechanism of the interbeat variability.

The second issue is more applicative. Omitting formal considerations, is
it possible to use variability indexes with a diagnostic purpose? Among the
several possible answers, we preferred to address a multivariate approach.
Not a single index is used in the classification among diseased and healthy
subjects, but a vector of different parameters, each one with its own pecu-
liarity. Linear, spectral and nonlinear parameters are used together to build
up a robust classifier. Then, the experimental work accomplishes two tasks:
(i) the investigation on the mechanisms generating the HRV structure and
(ii) starting from the evidence on the existence of nonlinear contributions,
uses this information in the prediction of diseases.

The physiological bases of the work are presented in chapter 1. The
cardiovascular system is briefly discussed starting from the muscular cells
excitation. RR series are, also, introduced and discussed.

Chapter 2 is a basic introduction to the several methods used during
the analysis. Techniques were organized, mainly, in three categories. The
first one comprises classical time domain statistical methods; the distribu-
tion of the derivative signal I∆(i) = RR(i+1)−RR(i) is in depth analyzed;
its long tails have connections with the probability density of some frac-
tal set and stock market indexes. Then frequency domain techniques are
discussed for the importance they hold in clinical diagnostic processes. Fi-
nally fractal-related (self-affine) approaches are introduced; in the literature
a large number of these indexes is present. We tried to relate them, showing
how similar their aims are. We also presented a new technique (multifractal
analysis performed via generalized structure functions) previously employed
in the study of fully developed turbulence. The chapter ends with a discus-
sion of the hypothesis tests which were introduced to disprove the evidence of
low-dimensional chaos in time series. Along the sections, for each methods,
hypotheses and implications, related to the HRV series, were investigated;
in some cases, relationships among indexes were stated, where relevant.

In chapter 3, multifractal analysis is applied to 50 different RR se-
ries, extracted from 24-hours Holter recordings, collected in the Noltisalis
database. Nonlinear methods require, usually, very long time series; for this
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reason, 24-hours Holter were selected for the analysis. Signals are separated
in five different populations, corresponding to different cardiac pathological
states. Initially, RR series were analyzed by means of the methods pro-
posed in chapter 2. Then, the first question, among the two ones previously
stated, was addressed and the hypothesis was validated through surrogate
data tests. The discriminating ability of the multifractal exponents was also
compared with the other considered techniques (on a singular index basis).

Multivariate analysis is described in chapter 4. Starting from the expe-
rience (made on HRV data and illustrated in chapter 3), we started with
a second approach. If nonlinear mechanisms really contribute in the HRV
behaviour, then they could improve the discrimination ability in diagnoses.
Therefore, a second experimental protocol was introduced: 362 cardiotoco-
graphical exams have been collected and analyzed. The multifractal ap-
proach can not be applied (it is nearly impossible to record long enough se-
ries of this kind) therefore approximate entropy, a regularity index, became
the nonlinear statistic of use. For each recording classical cardiotocographic
index and spectrum components were also computed; with approximate en-
tropy, they constitute the vector of parameters entering the classification
process. The whole population of fetuses has been separated in two groups,
according to the health state of the baby at delivery (as recorded in the
physician diagnosis): “healthy” and “potentially pathological”. Then sev-
eral classification techniques (linear, quadratic and discriminant analysis,
k-nearest neighbour and feed-forward neural networks) have been used to
automatically allocate each exam to one of the two groups, using the in-
formation given by the parameters vector. The idea is that nonlinear and
linear parameters, together, can characterize HRV much better than singu-
larly. This would increase the number of possible diagnostic applications
and the robustness of the allocations, as well.

Three appendixes of the thesis, contain more or less complex method-
ological material that would have distract the attention of the reader. In
appendix A, Lévy stable distributions are discussed in depth; they play an
important role in chapters 3 and 4. Appendix B, contains an introduction
to the Kuramoto model, which is a possible mathematical model of syn-
chronization in a group of nonlinear oscillators, globally coupled. it is a
schematic explanation of what happens in the sinoatrial pacemaker as long
as cells synchronously fire and give the pace to the whole muscle (chapter 1).
Finally, appendix C reports a few notes on approximate entropy and sketches
an original efficient algorithm for its numerical estimations (very useful on
long time series in chapter 3).
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The thesis work contributes to explore the complex control mechanisms
of the cardiovascular system over long time scales; it also studies parameters
which can be potentially effective in the actual clinical practise.





1. CARDIOVASCULAR CONTROL
MECHANISMS

The heart and the blood vessels form a transportation system that delivers
to all cells of the body the materials needed for their proper function and
that carries away the waste products of their metabolism.

Specific function of the heart is to maintain the circulation so that an
adequate supply of blood at a sufficient pressure reaches the body tissues
[Milnor, 1968; Marshall, 1968]. Schematically, it is composed of four cham-
bers made of muscular tissue with autonomous contractile capabilities. Each
chamber is functionally equivalent to a mechanical pump with a two steps
working cycle. At first, the cavity is stretched and filled (“diastolic phase”),
then the contraction of the chamber pumps the blood out of the cavity
(“systolic phase”).

The two upper smaller cavities are named “atria” and their task is essen-
tially to fill the two lower “ventricles” (the left atrium is connected through a
valve to the left ventricles and, in the same way, the right atrium is connected
to the right ventricles). The left ventricles supplies the pressure into the sys-
temic circulation (nearly the whole body, ending into the right atrium) and
for this reason it is the biggest chamber; the right ventricles pumps the blood
though the pulmonary circulation back to the left atrium. In a healthy heart,
the four chamber activities are coordinated so that the systolic contractions
of the atria synchronize with the diastolic expansions of the ventricles. The
heartbeat, easy to hear with a stethoscope, corresponds to the simultaneous
contraction of the two ventricles.

Despite this naive mechanical description, such a complex organ like
the heart can behave properly only if the cells activities are well directed
and organized. First of all, this is necessary for the correct operation of
each chamber (cells have to contract all together); then it is important for
the functionality of the heart as a whole (atria and ventricles have to work
coordinately to perform an efficient pumping function). To explore how
synchronization develops, it is useful to explore heart cellular organization.



2 1. Cardiovascular Control Mechanisms

1.1 Cardiac Cells

Myocardial muscular cells are roughly cylindrical, typically 100 µm long
and with a diameter of 15 µ; they are multinucleated and joined together
at the intercalated disk [Keener and Sneyd, 1998]. Each disk comprises
the plasma membranes of two separate cells and it is in this dense intra-
cellular material that myofibrils terminate. Disks transect the fiber in a
stepwise manner providing the mechanical adhesion among myofibrils of ad-
jacent cells (desmosomes or tight junctions) [Marshall, 1968]. While the
cellular membranes are typically separated by about 250Å, in this junction
regions they are practically fused together. Electrical coupling of cells is pro-
vided by small nonselective channels, usually called gap junction or electrical
synapses, that form direct intercellular connections through which ions and
other small molecules can flow. Usually 20Å in diameter, they are formed by
the joining of two connexons, which are hexagonal arrays of connexin pro-
tein molecules. The resistance gap junctions provide to conduction is low,
compared to what would result from two cell membranes put together, but
it is high if compared to the intracellular cytoplasm (the cross-sectional area
for conduction is greatly reduced).

In general, the control of cell’s ionic concentrations results in a potential
difference across the cell membrane, causing ionic currents to flow through
channels present into the membrane. Cardiac cells, as many kind of cells,
use this potential as a signal, and their contraction depend on the generation
and propagation of electrical signals. Cells of this sort are said to be excitable
because by applying a sufficiently strong current, the membrane potential
goes through a large excursion, called action potential, before eventually
returning to rest.

The most obvious advantage of excitability is that an excitable
cell either responds in full to a stimulus or not at all, and thus
a stimulus of sufficient amplitude may be reliably distinguished
from background noise. In this way, noise is filtered out, and a
signal is reliably transmitted [Keener and Sneyd, 1998].

How an action potential is generated? This issue was firstly addressed in
1952 by the works of A. L. Hodgkin and A. F. Huxley (with the collaboration
of B. Katz) studying conduction in the squid giant axon . They developed
one of the more important quantitative model in all physiology history, the
so called Hodgkin-Huxley model. At rest, the potential measured inside
a squid giant axon cell is negative with respect to the intracellular liquid,
due mainly to the differences in the concentration of sodium and potassium
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across the membrane (the equilibrium potential it is close to the K+ Nernst
potential, being other ions membrane conductances small). If small currents
(from nearby cells, for example) are applied, for a short period of time, the
potential return suddenly to its equilibrium after the current ceases. But if
the stimulating current is large enough to rise the potential over a certain
threshold, membrane permeability to Na+ increase dramatically (voltage de-
pendent Na+ gate) and a fast sodium influx starts. The potential inside the
cell displays a sudden increase becoming positive. In comparison with the
rest condition, there’s a nearly sign reversal in the potential, therefore, it is
said that the cell depolarize. Sodium conductance then begins to decrease
and drives the potential back to the equilibrium value; but at about the
same time that the Na+ current is inactivated, an outward potassium cur-
rent starts and the potential decreases under the rest value and eventually
return to the equilibrium situation; this second phase is called repolarization.
After the Na+ current is deactivated, the cell is in a refractory period when
additional stimuli evoke no substantial response.

The qualitative behaviour of a cardiac cell is very similar to what de-
scribed by Hodgkin-Huxley for the squid giant axon; at least it can give a
clue on how an action potential is generated. The primary difficulties, that
rise trying to develop a quantitative model of cardiac cells activities, are
related to the presence of many different cell types and many different types
of ionic channels (not only K+ and Na+ but also Cl−, Ca2+ and H+ to name
but a few). As will become clear in the next paragraph, heart’s cells can
be collected in several families and these differences reflect on the different
duration and shape of the action potentials. For these reasons quantita-
tive models of cardiac cell structure are far from complete: some effects
are retained, other discarded and some other collected into conglomerates
(something like the leakage current into the Hodgkin-Huxley model).

Moreover, myocardial cells are contractile muscular cells: the action po-
tential causes the cells to contract, thereby enabling the pumping function-
ality [Marshall, 1968; Keener and Sneyd, 1998]. This effect has to be taken
into account, in a model, by considering the action of calcium currents.

1.2 Cardiac Propagation

The electrical activity of the heart starts in a collection of cells known as the
sinoatrial node (SA node) located just below the superior vena cava on the
right atrium. The cells in the SA node are nodal fiber: autonomous oscilla-
tors, with few myofibrils. They do not need a stimulating current to start
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the depolarization and then generate an action potential. Being the region
which have the greatest degree of auto-rhythmicity, it will determine the
rate of beating of the entire organ. The signal then propagates by the atrial
cells through the atria, which contract pumping blood into the ventricles.

Atria and ventricles are separated by a layer of non-excitable cells, that
acts like an insulant, preventing electrical waves to be propagated to ven-
tricular cells. Only at the base of the right atrium there is a pathway for an
action potential to propagate across the septum to ventricles; it is a collection
of nodal cells called the atrioventricular node1 (AV node).

The propagation velocity in the AV node is slow compared to other car-
diac cells, due to a decreased density of sodium channels; but when the
action potential emerges from this gate, it is quickly delivered, to the in-
ner surface of the ventricles, by a specialized collection of fibers called the
bundle of HIS. The bundle of HIS is composed of Purkinje fibers, cells with
reduced contractile capabilities and small auto-rhythmicity; the bundle di-
vides into two branches which run down either side of the intraventricular
septum and, eventually, it form a network spreading throughout the interior
of the ventricles. As soon as action potentials emerge from the Purkinje
fibers, they activate the contraction of the myocardial cells. The contrac-
tion wave propagates through the ventricular wall outward to the epicardial
surface. Figure 1.1 shows a schematic presentation of the myocardial con-
duction system. In pathological conditions, several different regions of the
myocardium can take over and perform, even temporarily, as the leading
pacemaker.

In summary, in the heart there are three different groups of fiber: nodal
fiber, like those composing the SA and AV node, Purkinje fiber and muscular
tissue. Nodal cells have the capability of spontaneously excite and generate
action potentials; on the other hand they have reduced contractile capa-
bilities and small propagation velocity. Purkinje fiber can spontaneously
excite too, even if this happens not frequently in normal conditions. They
show small contractile capabilities but high propagation velocity of action
potentials. Auto-rhythmicity is nearly absent in muscular fiber; they are
characterized by good propagation velocity and riches of myofibrils2.

1 The AV node acts like as a reserve pacemaker and it is able to take over when the
impulse generation of the SA node is suppressed (nodal rhythms).

2 For quantitative models of electrical activities in the different kind of tissues see:
Yanagihara et al. [1980] and Noble and Noble [1984] for the SA node; DiFrancesco and
Noble [1985] for Purkinje fiber cells; Luo and Rudy [1991] for ventricular cells.
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Fig. 1.1: Schematic diagram of the cardiac conduction system [Keener and Sneyd,
1998].

1.3 Arterial Pressure Regulation

The mechanic contraction described in the previous paragraph is sponta-
neous and, at least in non pathologic conditions, do not require the inter-
vention of a control system located outside the heart. The depolarization in
the sinoatrial node is “automatic” and, by itself, is sufficient to generate an
heartbeat. This would lead to a nearly constant heart rate, as depolariza-
tion in the SA node happens with constant velocity. But the total amount
of blood pumped by the heart (cardiac output), it is not constant and varies
dramatically in response to the metabolic needs of the body; for example,
during exercise the oxygen demand increases and the same have to do the
cardiac output.

The primary nervous mechanism for the control of the cardiac output is
the so called baroceptor reflex ; it is a complex feedback scheme that include
the whole circulatory system, not only the heart.

A rise in arterial pressure is detected by stretch receptors, called barore-
ceptors, located in the walls of large arteries of the systemic circulation
(carotid sinus and aortic arch). This causes a signal to be sent to the cen-
tral nervous system from which feedback signals are sent, through the auto-
nomic nervous system, back to the circulatory system, eventually enabling
the regulation of the arterial pressure.

The autonomic nervous system controls those functions normally ex-



6 1. Cardiovascular Control Mechanisms

cluded from the voluntary control, like the circulatory system, the gastroin-
testinal system and the respiratory system. It is composed of two main parts,
the sympathetic (SS) and the parasympathetic (PS) nerves. The heart re-
ceives its nerve supply from both these components of the autonomic nervous
system. The parasympathetic stimulations are inhibitory in their action,
while the sympathetic are activating.

The parasympathetic nerve acting on the heart is the vagus; it innervates
the nodal tissue of both SA and AV node, the bundle of His and the atrial
muscle. Stimulation of the vagus nerves result in a slowing of the heart rate,
a diminution in the strength of atrial contraction and a marked reduction of
the conduction velocity through the AV node. The sympathetic nerves act
directly on the ventricular muscle and slightly on SA, AV nodes and on the
Bundle of His [Marshall, 1968]. Their stimulation results in a great increase
in both rate and force of contraction of the heart and an increase in the
conduction velocity through atria, AV node and ventricles.

The two autonomous nervous systems work synergically to regulate the
heart activity, and the actual heart rate is much more a balance among their
actions. An increase in heart rate can be the result of a stronger stimulation
by the sympathetic system, a decrease activity of the parasympathetic or
both. Moreover, their regulatory intervention is not relegated to special
situation but it is always present; in fact both sets of nerves exhibit tonic
activity under normal conditions.

Despite this brief description could lead to think so, the actions of the
two collections of nerves are not exactly symmetrical; the sinoatrial node is
prevalently innervated by vagal fibers, therefore, in normal conditions, the
parasympathetic system has a leading action on the control of the heart
activity. Moreover, vagal activity is much faster and can explicate its effects
on the timescale of one beat; on the contrary, sympathetic activation is
slower and requires from 2 to 4 beats to be noticed, but its effects are more
persistent in time [Berne and Levy, 1996].

Experiments in which PS and SS inputs are blocked reveal that the in-
terbeat intervals (τ), only directed by SA node firing, are very regular and
average about 600 ms. Suppression of the SS stimuli can results in an in-
crease of τ up to 1500 ms; when only the SS is active, τ can decrease to less
then 300 ms [Berne and Levy, 1996].

A part from the baroceptor reflex, the nervous system activities is stimu-
lated by a long list of other factors like elevation of carbon dioxide blood con-
centration, hormones release, emotional and phycological stimuli and many
others; therefore, many causes influence the heart regulation.
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1.4 Heart Rate Variability Signal

During the cardiac cycle, the action potentials propagation generates an elec-
trical potential field that can be measured on the body surface. In fact along
the depolarization wavefront, while the membrane potential experiences a
sharp increase, the extracellular potential displays a sudden decrease. The
body is a volume conductor, therefore the current (ions going in and out
from cells membranes) spread throughout the body. For this reason, during
heart depolarization it is possible to measure a voltage difference between
any two points on the body surface (on average not bigger then 4 mV); from
a certain distance, the action potential appears like a step in potential.

The electrocardiogram (ECG) is the continuous recording of the body-
surface potential. Cardiologists have settled 12 standard leads along which
recording are routinely made in hospitals every day. Then clinicians, looking
at the tracing, glean information about the heart’s conditions of patients.

Figure 1.2 presents the evolution of the surface potential during a heart
cycle. When the action potential is spreading through the atria, the first
signal, called the P wave, is detected. The propagation of the action potential
through the wall of the ventricles, due to the big amount of muscular tissue
involved, produces the largest deflection, called the QRS complex. Then,
the repolarization of the ventricles yields to the T wave; atrial recovery is
not detected, as it is hidden by the ventricles depolarization. Only those
electrical phenomena producing enough extracellular current and involving
adequate muscle mass are visible on the electrocardiogram; so SA nodal
firing, AV node conduction and propagation through the Purkinje network,
described in section 1.2, are not recognizable on the ECG.

In the previous paragraph, we referred to the interbeat distance τ ; phys-
iologically it correspond to the distance among two subsequent firing of the
SA pacemaker, or, as it happen nearly at the same time, to the activation of
the atria. But on the ECG recording the P wave, related to atrial depolar-
ization, is difficult to detect (especially with automatic detection algorithm);
for this reason, is usual to refer to the interbeat distance as to period of time
between two following R peaks on the electrocardiogram (RR interval). The
proposition holds under the hypothesis that the distance between the P and
R peaks (PR interval) is constant and this’s not a terrible approximation in
normal physiological ranges.

Due to the presence of the control mechanisms, τ varies continuously
and Heart Rate Variability (HRV) has become the conventionally accepted
term to describe variations of RR intervals [Task Force, 1996]. In the last
twenty years a strong relationship has been drown among cardiovascular
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Fig. 1.2: Cellular transmembrane potential and electrocardiogram. The upper tracing
represents the transmembrane potential of a single ventricular muscular cell and the lower
tracing shows the body surface potential during the same electrical event. The numbers
on the upper tracing designate phases in the action potential cycle: 0: the upstroke, 1:
the brief spike, 2: the plateau, 3: the rapid recovery, 4: resting potential. [Keener and
Sneyd, 1998].

mortality, including sudden cardiac death, and the autonomic control sys-
tem. Clinicians and researchers are still on a quest for quantitative marker
of autonomic activity: HRV represents one of the most promising.

In 1996, the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology collected their forces and expressed
a Task Force with the responsibility of developing appropriate standards in
HRV analysis. The document they produced, Task Force [1996], is now a
fundamental reference for those working on Heart Rate Variability; this is
how they described the history of HRV’s clinical relevance:

The clinical relevance of HRV was first appreciated in 1965 when
Hon and Lee noted that fetal distress was preceded by alterations
in interbeat intervals before any appreciable change occurred in
heart rate itself. Twenty year ago, Sayers and others focused at-
tention on the existence of physiological rhythms imbedded in the
beat-to-beat heart rate signal. During 1970s, Ewing et al devised
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Fig. 1.3: The finite sampling frequencies, in the ECG, implies that estimates of the
interbeat intervals are affected by noise. In figure, the power spectrum of the noise ti is
plotted for two different values of the sampling frequency fc (see the legend).

a number of simple bedside tests of short-term RR differences to
detect autonomic neuropathy in diabetic patients. The associa-
tion of higher risk of postinfarction mortality with reduced HRV
was first shown by Wolf et al in 1977. In 1981, Akselrod et al
introduced power spectral analysis of heart rate fluctuations to
quantitatively evaluate beat-to-beat cardiovascular control.

These frequency domain analysis contributed to the understand-
ing of autonomic background of RR interval fluctuations in the
heart rate record. The clinical importance of HRV became appre-
ciated in the late 1980s, when it was confirmed that HRV was
a strong and independent predictor of mortality after an acute
myocardial infarction.

. . .

1.5 Tachogram

The series of subsequent RR intervals is called tachogram. The sequence
of interbeat distances is usually extracted from the ECG via automatic al-
gorithms; a fiducial point is chosen on the QRS complex (normally the R-
wave peak) and located with a threshold on the derivative or with template
matching techniques. Only normal intervals are considered, that is, intervals
between adjacent QRS complex resulting from sinoatrial node depolarization
(presence of the P-wave).

The electrocardiogram is generally recorded with a sampling rate (fc)
in the range 128-1024 Hz and each point is then stored with a 10 or 12
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Fig. 1.4: A tachogram, extracted from a 24-hours Holter ECG recording (fc = 250 Hz)
belonging to a non-pathological 38 years old subject. The signal has been averaged over
5-minutes windows. The recording started at 8.30pm and lasted nearly 21 hours.

bits quantization; being the resolution in time limited by the sampling fre-
quencies, on the ECG sequence, the R-wave peak is located with a precision
proportional to fc. Therefore, the finite sampling frequency of the recording
device induces a quantization error on the RR series (induced quantization
error).

Typically a sampling frequency fc = 250 Hz is considered enough for the
correct reconstruction of the ECG signal; on the other hand this means an
uncertainty on the position of the R-wave peak of 1000/250 = 4 milliseconds,
in average. Putting this in formulae

RRi = Ri+1 + ui+1 −Ri − ui = RR∗i + ti

where ui is the δ-correlated quantization error, uniformly distributed with
E[ui] = 0 ms, E[u2

i ] = (1000/fc)2/12 ms2.
The resulting error ti = ui+1−ui, superimposed on the real RRi interval,

is triangularly distributed with E[ti] = E[ui], E[t2i ] = 2E[u2
i ] and E[ti+1ti] =

−E[u2
i ]. It is a moving average (MA) stochastic process with H(z) = z − 1

and power spectrum S(f) = 4[sin(πf)]2E[u2
i ] ms2. Figure 1.3 plots the

spectrum for two different value of fc; as it can be noticed, the noise ti is
not white, but it affects mainly highest frequencies.

In most applications the jitter in the estimation of the R-wave peak can
be accepted without drawbacks3; unfortunately with spectral analysis and
many other techniques, derived from nonlinear approaches, the quantization
noise can become a problem [Task Force, 1996]. In this cases, it is common to

3 At the end of the day, the ratio, among the absolute value of the noise and the mean
RR interval (≈ 800 ms), is small (≈ 1% for fc=128 Hz).
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use a sufficiently high sampling frequency (at least 250 Hz); another possibil-
ity is to refine the position of the R-wave peak with parabolic interpolation
over nearby points (5 points are often a good compromise).

In figure 1.4 a tachogram extracted from a 24-hours Holter ECG record-
ing; as expected, during the resting period the heart frequency decreases, as
it is mainly influenced by vagal stimulations, and conversely the interbeat
interval increases.





2. EXTRACTING INFORMATION FROM
THE HRV SIGNAL

In this chapter we present several parameters proposed to analyze the heart rate
variability signal (HRV). Some of them are quite widespread, like the classical time-
domain statistics or the spectrum analysis, and now employed every day in the
diagnostic process. Some others are still research matter, as the application of
multifractal analysis, which seems promising.

The study of HRV is made to improve the physical and physiological knowledge
on control mechanism of the beat generation (determined by the interactions of
hemodynamic, electrophysiological and humoral factors as well as by the autonomic
and central nervous regulations). Besides, certain parameters (e.g. approximate
entropy) are considered only for their ability to summarize information and allow a
comparison among different recordings. In diagnostic practice, in fact, the power of
an index to discriminate a diseased patient from an healthy subject, is fundamental.

Heart rate variability analysis is usually performed on two different scales: short-
term, of 2 to 5 minutes, and long-term, up to 24 hours, recordings, depending on the
aim of the research. For example, central nervous regulations act on time scales of
seconds, so short-term recording are preferred. On the contrary circadian rhythms
modulate the firing rate over scales of hours, so a long-term window becomes nec-
essary.
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2.1 Statistical Characterization

Statistical methods have been, traditionally, used to extract information
from RR series: in many cases they summarize characteristics of the signal
in a single number, easy to compare and store. Nowadays they are still in a
leading position, and perhaps among the most used by physicians.

Except a few cases, these methods do not take into account the temporal
evolution of the sequence. They only display some aggregate information.
Nevertheless them fundamental importance and usefulness concerns the pre-
liminary screen of the data, before starting with any other more complex
approach.

2.1.1 Classical Statistics

The minimal statistical characterization is achieved by computing the mean
and the standard deviation (σ̂ or SDNN1) of the entire RR series. SDNN
increases with the length of the analyzed recording as the RR measures are
not independent of one another2 [Kaplan and Glass, 1995; Task Force, 1996].
Thus, it is inappropriate to compare variances obtained from sequences of
different durations. Alternative measures of dispersion around the mean
are the interquartile range IQR = ξ3/4 − ξ1/4 (where ξp is the p quantile)
and MAD = mediani{|RRi − µ|}. IQR and MAD indexes are not very
efficient but much more robust than SDNN against outliers [Venables and
Ripley, 1999] like spikes, very frequent in long series. At the normal MAD ≈
0.6745SDNN so it is usual to refer to MAD/0.6745 as the MAD estimator
of the standard deviation3. SDNN, IQR and MAD give information on the
overall heart rate variability.

To neglect the influences arising from changes in heart rate due to cycles
shorter than 5 minutes, it is useful to average the entire sequence over 5-
minutes windows (see figure 1.4) and then to compute the standard deviation
of the reduced series. The obtained index is only influenced by long-term

1 We follow the terminology in [Task Force, 1996], where the interbeat difference is called
normal-to-normal interval, referring to the fact that only normal intervals are considered.
Thereby the suffix NN.

2 It has been suggested that the heartbeat displays 1/f noise: for 1/f noise the variance
increases as the length of the sequence N increases, and in the limit of an infinite series it
goes to infinity.

3 Although σ̂2 is the optimal estimator of the variance of the normal distribution, it
can be substantially sub-optimal for distribution close to the normal; in fact, is any value
RRi → ∞, then σ̂ → ∞. Artifacts with large amplitude are not so uncommon in RR
sequence before correction techniques are employed.
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components of HRV and is usually called SDANN.

2.1.2 Density Estimation

Heart Rate Variability is a complex signal produced by a highly nonstation-
ary system: a man or a woman involved in their daily activities, subjected
to all the abrupt changes of rhythm that it requires. Therefore, it is very
unlike the HRV probability density to be a regular and smooth function, like
a Gaussian or a Gamma function. Unless it is possible to make reasonable
hypothesis and to assume a particular functional form for the HRV density,
all we can do is a non-parametric estimation of the distribution.

Of course, the normalized histogram is an estimator of the HRV density
function, but it depends (i) on the bin width b and (ii) on the starting point
of the grid of bins. Shifting the grid can result in large effects on the density
[Venables and Ripley, 1999], in particular when a low sampling frequency
has been used recording the ECG (128 Hz), as underlined in figure 2.1. The
Task Force [1996] suggests a standard bin width of b = ∆128 = 1000/128
ms, which is the lower precision in current commercial equipments. This
recipe should permit comparisons among histograms computed on different
RR series. To really fulfil the standardization it is also necessary to set a
starting point for the bins grid either. We suggest, as a rule of thumb, to
center the first bin on the lower RR value available in the sequence. Among
all the possible starting points, this one accomplishes a good smoothness
and does not overstate the maximum value of the density (see the caption
of figure 2.1 for more numerical details).

If recordings were made using odd sampling frequencies (250 instead of
256 Hz for example) or bizarre rounding algorithms, even the prescription
just described can not be enough to ensure smoothness. The variance of the
histogram depends inversely on b, so in situations like these may be useful
to enlarge the standard bin width 3 or 4 times, as illustrated in figure 2.2.

Otherwise, if smoothness is the key point, or if more robustness and
resolution are necessary, a better approach is to consider the kernel density
statistic [Venables and Ripley, 1999]:

f̂(x) =
1
Nb

N∑
j=1

K

(
x−RRj

b

)
.

N is the number of sample in the RR series; K() is the kernel, normally
chosen to be a probability density function. Common alternatives are the
normal or the “cosine” function (1 + cosπx)/2 for x ∈ [−1, 1]. In this case,
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Fig. 2.1: Histogram of the RR intervals for a 24-hours Holter series belonging to a 60
years old heart transplanted patient (fc=128Hz). Both figure where constructed using the
recommended [Task Force, 1996] bin width ∆128 = 1000/128 = 7.8125 ms but different
starting points were used for the grid of bins . In figure (a) the first bin starts at 297 (a
total of 160 bins were used, up to 1547 ms), while in (b) at 297-∆128/2. A naive half-bin
shift produces in (a) unrealistic regular spike-like bumps and predicts a maximum for the
density quite uncorrect, leading to a smaller HTI value. The RR intervals are usually
measured on a discrete scale, to reduce storage requirement, rounding to the nearest
millisecond. When, like in this case, the sampling frequency is given as a power of 2, the
base-10 rounding “conflicts” with the base-2 bin width producing an irregularly spaced
quantization scale. For fc = 128 the sequence of distances between adjacent possible value
of RR is something like: . . . -8-8-8-8-7-8-8-8-8-8-7-8-8-8-8-7-. . . . With other fc the scale
is different but still problematic, unless the frequency used is very high (≥ 1024). The
solution to produce comparable histograms is to place the first bin so that the minimum
RR value, in the Holter series, lies exactly in the middle of it.

the ideal density, which is made by a series of delta functions (one for each
RR value), is filtered out by the kernel (through a proper convolution) so
obtaining the smoothing.

Like with the histogram, the choice of a bandwidth value b is a compro-
mise between different degrees of smoothing: enough to remove insignificant
bumps and not too much to cancel out real peaks. A good choice for the
normal kernel may be

b̂ = 1.06 min(σ̂, R/1.34)N−1/5,

where σ̂ is the sample standard deviation and IQR the interquartile range.
This is a variant of the (so called) Silverman “rule of thumb” [Venables and
Ripley, 1999].

Once the density is estimated, it is possible to evaluate the HRV by
measuring geometric properties of the density itself. These indexes are called
geometric. The Heart triangular index (HTI) is defined as the total number
of RR intervals in the series divided by the number of intervals in the modal
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Fig. 2.2: Probability densities estimated for two RR 24-hours Holter series. In panel
(a) normal subject (see figure 1.4); panel (b) a heart transplanted patient (see figure 2.1).
Histograms have been computed using a bin width of 4∆128 ms; the superimposed con-
tinuous lines are kernel density estimations with Gaussian kernel [Venables and Ripley,
1999]. The transplanted patient’s HRV range is greatly reduced; nevertheless a day-night
variability is still recognizable.

bin of the standard histogram (using b = ∆128). In the same way, if a density
f̂(x) has been constructed instead of an histogram (that is, its integral is 1),
HTI=[max(f̂)∆128]−1.

In figure 2.2 the probability density of two RR sequence, extracted from
24-hours Holter recordings, are estimated via normalized histograms and
using a Gaussian kernel. The density in panel (a) corresponds to the series
in figure 1.4; day and night activities are marked by the two distinct bumps,
respectively; density in panel (b) corresponds to the series in figure 2.1.

During transplantation, all heart innervations from the autonomous ner-
vous system are removed by the surgical procedure (reinnervation may occur
as early as 1 to 2 years after the surgery, but it is usually of sympatheti-
cal origin). Depleted of nervous control contributions, HRV activity is very
reduced, affected only by hormonal and mechanical influences. Therefore
the RR range is decreased (≈ 450 vs. ≈ 900 ms in the normal case) and
most of the probability gathers around a single RR value, likely close to the
sinoatrial pacemaker firing frequency (the peak at ≈ 500 ms). Nevertheless
a weak night-day variability is still noticeable.
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2.1.3 Intervals Differences

A common estimate of short-term components of HRV is the square root
of the mean squared differences of successive RR intervals (RMSSD) [Task
Force, 1996]

RMSSD =

√∑
i(RRi+1 −RRi)2

N − 1
≈ σ̂I1 .

It is a standard deviation estimator and it is not robust against artifacts in
the series. Then, in this case, the same alternatives described for SDNN in
section 2.1.1 can be employed. The signal

I∆
i = RRi+∆ −RRi,

where ∆ is a time lag, is usually took into account because, unlike the RR
series, it can be considered nearly stationary4.

Peng et al. [1993] suggest that the probability density of I1, considered
as a random variable, can be well described by the Lévy symmetrical stable
distribution

fX(x, α, γ) =
1
π

∫ +∞

0
e−γq

α
cos(qx)dq. (2.1)

Lévy stable distribution is a long-tail generalization of the normal distribu-
tion, making more likely the appearance of unusual events. It is the most
general probability distribution of a sum of identically distributed random
variables that looks like the distribution of each variable [Feller, 1971]. A
comparison with the standard normal distribution can be drawn, by con-
sidering the Lévy distribution with γ = 1/2 and one free parameter, α (see
appendix A for a brief introduction to stable distributions).

Lévy distributions are closely related to the theory of fractals [Mandel-
brot, 1977, 1983]. Mantegna [1991] showed that price indices of the Milan
stock exchange have statistical properties compatible with a Lévy density.
Penna et al. [1995] found that intervals between successive drops from a leaky
faucet display scale-invariant characteristics, typical of a Lévy distribution.

In their work, Peng et al. [1993] fit the distribution (2.1) to several I1

series extracted form ECG recordings belonging to healthy subjects and
to patients with a severe cardiac disease (dilated cardiomyopathy). Both

4 A random process is stationary if its statistical characteristics are invariant under time
shifts, that is, if they remain the same when t is replaced by t+ ∆, where ∆ is arbitrary.
The probability density, together with the mean and the variance, are independent on the
absolute position of the points on the time axis.
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(b) NR2 [σN=17.79, αL=1.84, γL=111.2]

Fig. 2.3: Probability density of I1
i = RRi+1 − RRi for a 46 years old normal subject

(dots); density has been estimated via normalized histogram using a bin width of 4 ms.
The continuous lines are fitted Lévy stable densities with parameters αL and γL displayed
in the title; the sketched lines are Gaussian distributions with zero mean and standard
deviation σN . Fittings were performed in (a) minimizing (2.2) and in (b) minimizing (2.3);
the match in (a) lacks of precision at the extremes of the tails. The standard deviation
of the data increments I1, σN , have been computed with the MAD estimator, to avoid
outliers influence.

populations led to a fit with α = 1.7 (γ is a scale factor and it was considered
not relevant).

In chapter 3 we perform a similar fitting to sequences belonging to a
broad spectrum of different pathology, but we reach similar conclusions: no
distinctions arise among different populations. The slow decay of the density
for large increments values may be of physiological importance as it could
be related to dynamical properties of the system that do not vary under
pathological conditions.

The probability density hX(x) of I1 for a 46 years old normal subject
is presented in figure 2.3. It was estimated with a normalized histograms
as described in the previous section for the RR signal. The hypothesized
density (2.1), following Mantegna’s work on Milan stock exchange [1991], is
fitted to hX(x) in panel (a). The error sum of squares

ε2(α, γ) =
∑
k

[hX(I1
k)− fX(I1

k , α, γ)]
2, (2.2)

with I1
k = bk (b is the histogram’s bin width), was minimized in the interval

I1
k ∈ (−200, 200). The integration (2.1) was performed by solving the re-
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lated ODE via a Runge-Kutta algorithm with automatic adjustment of the
integration step.

By using this technique, the fitting is generally good on the entire inter-
val, but sometimes it lacks in precision at the range extremes. The reason
is that the values of the density function, being are so small, have the same
relevance of the errors in the sum (2.2). This is exactly the case in panel
(a). To overcame this problem, we suggest to minimize

ξ2(α, γ) =
∑
k

 log10

(
bhX(I1k)

FX(I1k+b/2,α,γ)−FX(I1k−b/2,α,γ)

)
1 +

√
|I1
k |

2

, (2.3)

where FX is the Lévy stable cumulative distribution function. The fitting is
performed on a logarithmic scale, with a weighting function which slightly
decrease relevance of the tails. Results are displayed for a comparison in
panel (b); the fitting is more intuitive.

Evaluation of the fitting, through standard statistical test, is an interest-
ing point; we will do a deeper investigation on this point in chapter 3.

2.1.4 Cumulative Variation Amplitude Analysis

In section 2.1.2 the most common techniques employed to estimate the prob-
ability density from the beat-to-beat intervals series have been described. It
has been pointed out that the RR sequence is highly non-stationary5, due to
abrupt changes in patient’s activity, and parametric estimations are far to be
feasible. Recently, a method [Ivanov et al., 1996, 1998; Havlin et al., 1999]
was proposed to overcame such difficulties and try to address a universal
probability density for normal patients. We report it here for completeness.

The method is called cumulative variation amplitude analysis; it involves
the sequential application of a set of algorithms based on wavelet and Hilbert
transform analysis. The wavelet transform is attractive because it can elimi-
nate local polynomial behavior in the non-stationary signal by an appropriate
choice of the analyzing wavelet. The Hilbert transform also does not require
stationarity. The idea is to “filter” away non-stationarity effects from the
RR series it is possible to uncover intrinsic characteristics of the dynam-
ics. Eventually the transformed series is suitable for a parametric density
estimation.

5 A typical feature of such non-stationary signals is the presence of “patchy” patterns
which change over time; heterogeneous properties may be even more strongly expressed in
certain cases of abnormal heart activity.
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Fig. 2.4: Probability density of heart rate variations x ≡ A(t). The amplitude series
was obtained with the cumulative variation amplitude analysis from the same RR data
used in figure 1.4; here only 6 daily hours have been considered (from 12pm to 6pm). As

exploring wavelet we used ψ(τ) = −2e[−τ2/2](τ2 − 1)/(
√

3π1/4) with scale a = 8 (second
derivatives of the Gaussian function scaled to have unitary 2-norm). The continuous line is
the Gamma probability density P (x) that better fit the data; the parameters ν = 1.34 and
b = 0.012 are maximum likely estimates. Density have been rescaled by PMAX , preserving
normalization to unit area, where PMAX = bννe−ν/Γ(ν + 1) is the Gamma distribution
peak at x0 = b/ν.

First, the wavelet transform is applied. The wavelet transform of a time
series s(t) is defined as

Tψ(t, a) ≡ 1
a

∫ ∞

−∞
s(τ)ψ

(
τ − t

a

)
dτ

where the analyzing wavelet ψ has a width of the order of the scale a and
is centered at t. The scale a has to be chosen as a compromise among
good localization (small a) and filtering needs: a = 8 beats is often a good
choice, as it smooths locally very high-frequency variations. As analyzing
wavelet, derivatives of the Gaussian function: ψ(n) ≡ dn/dτne−1/2τ2

have
been proposed [Ivanov et al., 1996].

The second step is to extract the instantaneous variation amplitudes
of the wavelet transformed signal by means of an analytic signal approach
[Oppenheim and Schafer, 1989; Rocca, 1998]. Let s(t) represent a real signal;
the analytic signal is defined by S(t) ≡ s(t)+ is̃(t), where ŝ(t) is the Hilbert
transform of s(t) (the original real sequence with a π/2 phase shift). The
instantaneous amplitude A(t) is then defined as A(t) ≡

√
s2(t) + s̃2(t); it

can be considered, approximatively, as the envelope of the function s(t).
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Figure 2.4 analyzes the distributions of the beat-to-beat variation am-
plitudes A(t) of a healthy subject during day hours (6-hours record of RR
intervals, from 12pm to 6pm). The amplitudes are well fitted by the Gamma
distribution function

P (x, b) =
bν+1

Γ(ν + 1)
xνe−bx

(see the caption of the figure for more details).
Ivanov et al. [1996] claimed that the distributions of the variations, ob-

tained with the cumulative variation amplitude analysis from RR series of
normal subjects, when suitably rescaled, are described by a single Gamma
distribution, which is stable over a wide range of timescales (data collapse).
The authors attributed the functional form of the scaling observed in the
healthy subjects to underlying nonlinear dynamics, essential to the normal
heart function and possibly destroyed under abnormal conditions. As a first
prove of this hypotheses, they found that data collapse was not present in
subjects with obstructive sleep apnoea.
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Ultra Low Frequencies ULF f ≤ 0.003 c/b
Very Low Frequencies VLF 0.003 < f ≤ 0.04 c/b
Low Frequencies LF 0.04 < f ≤ 0.15 c/b
High Frequencies HF 0.15 < f ≤ 0.4 c/b

Tab. 2.1: Standard frequency range employed in the spectrum analysis of the interbeat
RR series [Task Force, 1996].

2.2 Spectrum Analysis

Spectrum analysis (SPAN) is used to study how the power (variance) of a
given signal is distributed among the frequencies spectrum. It is a classical
tool in signal processing [Oppenheim and Schafer, 1989; Kay and Marple,
1981]. At first approximation the Spectral Density of a signal is proportional
to the square module of its Fourier transform. Why is SPAN useful in
the analysis of beat-to-beat interval series? If a mechanism (e.g., a control
loop) is responsible for heart period modulation of a certain frequency, the
corresponding frequency component of HRV may be used as a measure of
these modulations. At least as long as the modulation is stable.

Interbeat sequences are discrete signals expressed as duration of RR seg-
ments (on the ordinates, measured in a proper time unit) versus number of
progressive beat (on the abscissas). The Fourier transform of a RR series in
the conjugate space is therefore measured as a function of non-dimensional
units, usually called number of cycles over beat (c/b). But spectral analysis
has been so largely employed for the analysis of signals evolving with time,
that for historical reason, it is very common to express frequencies in Hertz
([Hz]=1/[s]) also with other signals; Hz unit is frequently misused with PSD
of RR series too (and we’ll sometimes follow this habit).

A bit of care is necessary in that situations in which, for research rea-
sons it is necessary to compare external modulations at a given frequency
(properly expressed in Hz) and the HRV spectrum. The make the compari-
son feasible, the PSD has to be properly rescaled by the mean RR value (in
seconds). The rescaled unit is often called Hz equivalent (Hz eq.).

The frequencies for an RR series ranges between 0 and 1/2 c/b (and
also from −1/2 and 0 for symmetry reasons). A standard subdivision of
this range, motivated by theoretical and physiological arguments, has been
defined by the Task Force [1996] and it is reported in table 2.1.

Computing the PSD of an RR series means we made some assumption on
the system generating it. The interbeat series is considered the realization
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of a stochastic process which is (i) stationary and (ii) ergodic in the first and
second order. The energy of such a process may be infinite but its power
(variance), which is the quantity of interest, is not.

The basis of spectrum analysis are provided by the autocorrelation func-
tion, defined for a stochastic process as

R(τ) = E[RRt+τRRt].

The Wiener-Khinchin theorem state that the Power Spectral Density P(f)
is the Fourier transform of R(τ); that is

P(f) ≡ F{R(τ)} R(τ) ≡ F−1{P(f)}.

As long as we do not have an infinite amount of data, PSD has to be
properly estimated. Several technique have been proposed, but they can be
generally classified into two categories: non-parametric and parametric ones.
The former do not require the formulation of a specific generating model for
the signal but they need a longer series to be accurate. The second ones
are feasible only assuming the underling model as stationary and therefore
cannot deal with long-time recordings. A good review of spectrum analysis
techniques can be found in [Kay and Marple, 1981].

2.2.1 Non-Parametric Estimation

Non-parametric estimations are based on Fourier transform operations. His-
torically two main techniques have been developed: the direct approach via
discrete Fourier transform of the data, usually called periodogram, and the
indirect approach via autocorrelation estimate. Only the former will be de-
scribed in the remain of the section. Indirect methods are numerically less
efficient.

The periodogram is given by

P̂(k∆f ) =
Tµ
N

∣∣∣∣∣
N−1∑
n=0

RR0
n+1e

−j2πkn/N

∣∣∣∣∣
2

≡ Tµ
N

∣∣DFT(RR0)
∣∣2 (2.4)

where ∆f = 1/[NTµ], k = 0, · · · , N − 1, Tµ = 1 (Tµ = mean(RR) seconds, if
the frequency axis is expressed in Hz eq.) and RR0 = RR−mean(RR). ∆f

is the frequency resolution so that f ranges from 0 to 1/Tµ. The RR series
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has been subtracted by its mean value, therefore the integral of the PSD is
equal to the variance of the signal, that is

var(RR) =
N−1∑
k=0

P̂(k∆f )∆f ≡
N − 1
N

σ̂2, (2.5)

where σ̂ is the unbiased estimator of the standard deviation.
When the length of the RR sequence, N , is a power of two, a high-speed

radix-2 fast Fourier transform algorithm can be employed (this is the main
reason why the periodogram is so widely used). Otherwise one can compute
the mixed-radix discrete Fourier transforms: sequences whose lengths have
many small prime factors are processed quickly. Those that have few are
not6 [Press et al., 1992]. Mixed-radix algorithms are especially useful with
very long sequence when reducing the lengths to the nearest power of two
would result in a big loss of data.

A discrete frequency spectrum implies periodicity in time. By using the
periodogram as defined by (2.4), the RR series is implicitly considered pe-
riodic, that is, after RN we suppose to have another R1 and so on. On the
contrary, if zero values are more realistic boundary conditions than period-
icity, PSD have to be computed on the series QQ0, which is obtained by
padding RR0 with at least N −1 zeros, to avoid circular convolution effects.
Actually, more than N−1 zeros are usually added to make the new length of
the series, M , an exact power of 2. Caveat : (i) when assuming periodicity,
zero padding must be absolutely avoided; (ii) when zero padding is necessary,
even if the new series length is M , PSD in (2.4) has still to be normalized
by N to comply with (2.5)7.

The Periodogram’s inverse discrete Fourier transform (IDFT) is equiva-

6 When the sequence length is not an exact power of two, the prime factors of the
sequence length are found and the mixed-radix discrete Fourier transforms of the shorter
sequences is computed. The computational load is roughly proportional to N

∑
i pi where

pi are the prime factors composing N . Series with power of length are processed quickly,
but even power of 3 and 5 ones perform very well.

7 On the contrary ∆f is affected by zero padding, shrinking from 1/[N∆t] to 1/[M∆t].
However actual frequency resolution is definitely not improved by zero padding. The extra
M −N points in the Fourier space are obtained by interpolation between the N anyway
existing.
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lent to the biased autocorrelation estimator8

R̂(m) =
1
N

N−m∑
n=1

RRn+mRRn ≡ DFT[P̂(k)], (2.6)

(the formula is correct in case of zero values boundary conditions. With pe-
riodic boundary conditions it needs to be properly adjusted, but the relation
with the IDFT of the periodogram still holds).

The periodogram estimator offers a high spectral resolution but, as a
drawback, the PSD is definitely not smooth. Decrease in the variance of the
PSD estimator can be obtained by multiplying the autocorrelation function
by a proper window, that is convolving the periodogram with a smoothing
filter. Filters based on the Bartlett triangular window wB(τ) (zero for τ ≥
τMAX) and the Hanning window wH(τ) = (1/2)[1 + cos(πτ/τMAX)] are
commonly used. See [Rocca, 1998; Oppenheim and Schafer, 1989] for more
details.

The periodogram approach to PSD estimation is (i) computationally
efficient and (ii) it makes use of simply algorithms. Main drawbacks are:
(iii) suppression of weak periodic signal and (iv) frequency resolution limited
by the available data length. For more details see [Kay and Marple, 1981;
Task Force, 1996]

2.2.2 Parametric Estimation

Spectral analysis, based on a parametric approach, becomes a three step
procedure. At first a proper time series model has to be selected; then the
parameters of the chosen model need to be estimated from data. Finally the
spectral estimate is obtained by substituting the computed parameters into
the theoretical PSD implied by the model.

Various families of models can be suitably chosen to perform a parametric
spectral estimation on the RR tachogram. Among these, autoregressive
models (AR) are generally preferred [Kay and Marple, 1981; Zetterberg,
1969; Baselli et al., 1997] at least for two reason: (i) each MA and ARMA
stationary model, with finite variance, is equivalent to an AR model of proper
order (at most infinite) [Bittanti, 1981]; (ii) parameters of AR models can
be estimated by solving convenient linear equations.

8 The biased autocorrelation estimator is usually preferred to the unbiased one R̂′(m) =
(N/N −m)R̂(m) since it tends to have less mean square error.
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Auto-regressive are purely non-deterministic processes. They are ob-
tained by filtering a white gaussian noise through discrete dynamical sys-
tems with asymptotically stable rational transfer functions [Bittanti, 1990].
Thus, an AR process, of order M, is the only stationary solution of the stable
equation

RR0
n = −

M∑
i=1

aiRR
0
n−i + wn, (2.7)

where wn
d= WGN(0, σ2

G) is the white Gaussian noise. RR0 = RR −
mean(RR) is the RR sequence subtracted by its mean value.

The first step in AR model identification is the estimation of the autocor-
relation function, usually through the biased estimator reported in equation
(2.6). Model parameters estimation is achieved solving recursively the Jule-
Walker equation

R̂(τ) =

{
−
∑M

i=1 aiR̂(τ − i) for τ > 0
−
∑M

i=1 aiR̂(τ − i) + σ2
G for τ = 0;

(2.8)

via the Levinson-Durbin algorithm9

a1,1 = −R̂(1)/R̂(0)
σ2

1 = (1− |a1,1|2)R̂(0)
· · ·

ak,k = − 1
σ2
k−1

(
R̂(k) +

k−1∑
i=1

ak−1,iR̂(k − i)

)
ak,j = ak−1,j + ak,ka

∗
k−1,k−j

σ2
k = (1− |ak,k|2)σ2

k−1

where ak,j is the jth coefficient at level k (model of order k). σ2
k is the

variance of the one-step forward prediction error

ξkn = RR0
n − R̂R

0
n = RR0

n +
k∑
i=1

aiRR
0
n−i.

The choice of the model order, for RR series, usually have to fulfill the
three conditions: (i) M ∈ [8, 20] to avoid both under and over-fitting of the

9 Alternatively one can solve directly the first equations in (2.8), for τ = 1, 2, · · · ,M ,
employing the symmetry of the autocorrelation function R(τ) = R∗(−τ); then by plugging
the model coefficients ai in the second equation of (2.8) the standard deviation σG of the
white noise entering the model can be computed.
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model to the data; (ii) M ≤MAIC where MAIC is the order which minimizes
the Akaike information criterium [Bittanti, 1981; Akaike, 1974]

AIC(k) =
2k
N

+ log σ2
k;

(iii) the prediction error ξM satisfies a whiteness test, like the Anderson10

test, the Box and Pierce [1970] portmanteau test11 or the Ljung and Box
[1978] Q∗ statistics12.

Power spectral density for an AR process is given by

PSD(f) =
σ2
GTµ

|1 +
∑M

k=1 ake
−j2πkfTµ |2

=
σ2
GTµ

A(ej2πfTµ)A∗(ej2πfTµ)
, (2.9)

10 Anderson test is performed on the biased estimator of the prediction error’s autocor-
relation function

R̂ξ(τ) =
1

N −M

N−M−τ∑
i=1

ξi+ τξi.

Under the hypothesis that ξ is a white Gaussian noise
d
= WGN(0, σ2

ξ), the statistics R̂ξ(τ),

for τ 6= 0, is normally distributed with zero mean and variance E[R̂2
ξ(τ)] = [(N −M −

τ)/(N − M)2]σ4
ξ = σ2

R̂
(τ). Defined a significance level α (usually 5%), let’s be O the

number of R̂(τ) values, for 1 ≤ τ ≤ τ̄ ≤ N −M − 1, outside the α% confidence limit of
the autocorrelation estimator, that is

|R̂ξ(τ)| >
√
N −M − τ

N −M
Φ

(
1− α

2

)
σ2,

where Φ(·) is the normal cumulative distribution function. If O < ατ̄ , then can not be
rejected the null hypothesis that the prediction error ξ is a white Gaussian noise at the
significance level α. τ̄ is usually set to ≈ N/10.

11 The Box & Pierce statistics is defined as

Qτ̄ = (N −M)

τ̄∑
τ=1

R̂ξ(τ)

(see note (10) for details on τ̄ and R̂ξ(τ)). Under the null hypothesis that R̂ξ(τ) = 0
∀τ 6= 0, Qτ̄ has a χ2 distribution with τ̄ degrees of freedom [Venables and Ripley, 1999].
See also [Box et al., 1994].

12 The Ljung & Box statistics is defined as

Q∗τ̄ = (N −M)(N −M + 2)

τ̄∑
τ=1

R̂ξ(τ)

N −M − τ

(see note (10) for details on τ̄ and R̂ξ(τ)). Under the null hypothesis that R̂ξ(τ) = 0
∀τ 6= 0, Q∗τ̄ has a χ2 distribution with τ̄ degrees of freedom. See also [Box et al., 1994].
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where Tµ = 1 (Tµ = mean(RR) if frequencies are expressed in Hz eq.) and
A(z) is the zeta transform of the transfer function of model (2.7).

The total power σ2
RR can be expressed [Baselli et al., 1997] by

σ2
RR =

∫ 1/[2Tµ]

−1/[2Tµ]

σ2
GTµ

A(ej2πfTµ)A(e−j2πfTµ)
df =

σ2
G

j2π

∮
|z|=1

z−1

A(z)A(z−1)
dz,

with the change of variable z = exp(j2πfTµ). The classical residual theorem
states that the last integral is equivalent to the sum of the residuals γk, one
for each pole pk zeros of H(z) = A(z)A(z−1) with |pk| < 1. That is

σ2
RR = σ2

G

M∑
k=1

γk = σ2
G

M∑
k=1

1
pkH ′(pk)

= σ2
G

M∑
k=1

1∏M
i=1 6=k(1− pip

−1
k )

∏M
i=1(1− pipk)

.

Residuals γk relative to a real poles are real, and residuals of complex conju-
gated poles are complex conjugated as well. In the same way the PSD (2.9)
can be divided in contribution relative to each pole:

Sk(f) = Tµσ
2
G

(
γkpk

e−j2πfTµ − pk
+ γk +

γkpk
ej2πfTµ − pk

)
, (2.10)

and

PSD(f) =
M∑
k=1

Sk(f).

The frequency fpk
= ](pk)/(2πTµ) of pk allows to easily allocate each

pole, and its associate power σ2
Gγk, to ones of the frequency band of ta-

ble 2.1. Moreover fpk
can be interpreted as the central frequency of the

HRV modulating mechanism. Caveat : the power σ2
Gγk is real (for two com-

plex conjugated poles it is real the sum σ2
G[γk + γ∗k ]) but it is not necessary

a positive value13.

2.2.3 Remarks

Spectrum analysis requires stationary of the time series under study; on the
contrary the interbeat series is a highly non-stationary signal, continuously

13 Usually negative power components are considered an index of model over-fitting
to the data (too a high order N). With an automated procedure, when negative power
components can lead to unexpected results, the power in each spectral band can be more
safely computed through direct integration of the PSD,∫ fb

fa

Sk(f)df = −∆γkσ
2(fb − fa)− jγkσ

2

2π
log

[
pk − ej2πfb∆

pk − e−j2πfb∆
· pk − e−2jπfa∆

pk − ej2πfa∆

]
.
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modified by the action of neural control system and hormonal releases. The
physiological mechanisms responsible for LF and HF power components can
not be considered stationary on time periods longer then 2-5 minutes [Task
Force, 1996]. Therefor, usually spectral analysis is performed on two different
timescales, according to the investigatory motivations of the study.

Short term recordings of 2-5 minutes analyzes power components in the
LF and HF bands14. Commonly used indexes are the LF/HF ratio and
the normalized powers: LF norm [LF/(σ2

RR-VLF)] and HF norm [HF/(σ2
RR-

VLF)]. The efferent vagal activity is a major contributor to the HF compo-
nent, while LF components are considered a marker of sympathetic modu-
lation [Pagani et al., 1986; Lombardi et al., 1987; Pagani et al., 1991; Task
Force, 1996]. The LF/HF ratio characterizes the autonomic regulation of the
heart period, and often termed “symphato-vagal balance” [Malliani et al.,
1991]. The physiological explanation of the VLF component is much less
defined. It is commonly accepted to consider its major constituent nonhar-
monic components, without coherent properties and affected by algorithms
of baseline and trend removal [Task Force, 1996]. On 5-minutes sequence
long term regulatory mechanism are detected as noise or small trends.

Parametric techniques are basically employed with short term SPAN.
The interbeat series can be considered stationary on such short timescales,
moreover AR spectrum components can be easily allocated to each frequency
band. In figure 2.5, the spectrum is computed with both parametric and
non-parametric techniques on a short 3 minutes RR series, extracted from a
24-hours Holter recording.

Longer time series (usually up to 24-hours) can be analyzed to explore
the power contents in VLF and ULF bands15. Only non-parametric tech-
nique can be applied. VLF and ULF physiological correlates are still un-
known [Task Force, 1996]; they can be searched in the long term regulatory
mechanisms of the organism like thermoregulation and humoral factors. An
interesting approach is the examination of the PSD’s slope at the lower fre-
quencies (see section 2.3.1).

14 Hereafter we’ll use LF, HF, VLF and ULF to name both the frequency band and the
spectral powers [ms2] contained into that band

15 This analysis provides only averages measure of the modulations attributable to LF
and HF components
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(d) PERIODOGRAM AR MODEL

power fC power power fC power
[ms2] [nu] [ms2] [nu]

VLF 5174.7 0 - 5972.9 0 -
LF 6047.4 0.096 73.5% 5641.1 0.109 75.9%
HF 1866.7 0.243 22.7% 1320.4 0.249 17.8%

Fig. 2.5: Spectral analysis was performed on a short 3 minutes RR series extracted
from a 24-hours Holter recording of a 43 years old healthy subject (diurnal activities); the
200 RR values are displayed in panel (a). In panel (b), PSD estimate obtained with the
periodogram and slightly smoothed with a Bartlett window (τMAX = 400); the 200 original
points have been padded with 200 extra zeros. Panel (c) reports the PSD computed with
a parametric AR model (order M = 8, complying with Anderson whiteness test). In
both the panels, yellow area is the power associated with LF; red with HF. In panel
(d) some numeric values: “nu” are normalized unit (LF norm and HF norm); fC is the
central (barycenter) frequency in each band (this frequency can be related to the underling
physiological mechanism). The total power is σ2

RR = 13401.3 ms2; LF/HF = 3.24 with
the periodogram and LF/HF = 4.27 with the parametric estimation.
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2.3 Fractal and Multifractal Analysis

In 1975, Mandelbrot coined the term “fractal”, which up to now has been
used more informally to describe a basic concept, rather than being defined
in a mathematical rigorous way. Roughly speaking, a fractal entity is charac-
terized by the inherent, ubiquitous occurrence of irregularities which governs
its shape and complexity. Quoting Mandelbrot,

I coined the term fractal from the Latin fractus, which describes
the appearance of a broken stone: irregular and fragmented. Et-
ymology cannot force an actual stone’s surface to be fractal, but
it is surely not a standard surface, and it should be fractal if
it is scaling. The science of wear and of friction [...] supports
the belief that fractional Brown surfaces provide first approxima-
tion representations [...] for many natural surfaces [Mandelbrot,
1983].

It has become generally accepted that the theory of fractals is certainly
more suitable for a comprehensive description of the physical world than
many other theories which mainly handle completely regular phenomena.
The simplest fractal sets are characterized by some form of self-similarity, in
which parts, when magnified by a constant r, appear similar to the original
whole. The more general class of fractals are really multi-scale fractals, or
multifractals, which are characterized by multiple subdivisions of the original
into N objects, each magnified by a different factor ri, with i=1,2,...,N.

The best known fractal process is the Brownian motion which can be
constructed through a simple iteration, a property shared by many fractal
objects which can be studied analytically.

2.3.1 1/f Noise and Scaling Exponent

In 1982, Kobayashy and Musha [1982], analyzing a 10 hours RR series
recorded from an awake and at rest healthy subject, found that the power
spectrum was displaying a “power law” behaviour for time scales from few
minutes to hours; The PSD at frequency f was proportional to 1/fα with
α > 0. This preliminary observation was then confirmed by Saul et al.
[1987] that reported the 1/f relationship in 24-hours recording during ordi-
nary daily life in a larger population of subjects. It is found empirically that
in heart rate α ≈ 1 as firstly reported by Kobayashy & Musha.

The value of the α exponent is usually computed by linear regression
technique in a log-log plane. In the frequencies range (0, 0.04] Hz [Task
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Force, 1996], the model log PSD(f) = C − α log f is fitted on the power
spectrum PSD(f) obtained via FFT. The goodness-of-fit can be assessed by
R2 statistics. This technique, though it is very elementary, is one of the most
reliable [Pilgram and Kaplan, 1998], especially when the number of samples
is big enough (N > 1000).

The study of the power spectrum slope has gained popularity after Bigger
et al. [1996] proved it has clinical relevance. α seems to be an excellent
predictor of patient mortality, superior to other traditional power spectral
parameters quantifying the RR variability.

Generically a power law PSD form is called one-over-f noise; it is the
hallmark of long term correlations in the underling signal and it has been
observed in many types of time series from physical, biological, physiological,
economic, technological and sociological systems. With 1/f noise, there
exists no well-defined temporal scale for the correlation time; this implies
that the current value of the heart rate co-varies not only with its most
recent values but also with its long-term history in a scale-invariant manner.

Stationary stochastic processes displaying power law PSD of the form
PSD(f) = Cf−α are also called scaling [Mandelbrot, 1983] or self-affine
[Mandelbrot, 1983; Osborne and Provenzale, 1989]. For a self-affine signals
Xn, by definition,

∆−H [Xn+∆ −Xn]
d= [Xn+1 −Xn] (2.11)

independently on time ( d= means equality in the sense of distributions).
H ∈ [0, 1] is the scaling exponent. From a practical point of view, self-
affinity means that if the time scale is rescaled by a factor ∆ and the signal
itself is rescaled by a factor ∆−H , then the transformed time series has the
same statistical properties as the original one. Self-affine signal are truly
fractal curves (in the continuous case they are everywhere continuous and
non-differentiable). Examples are the classical Brownian motion (Bm) [Ein-
stein, 1985; Mandelbrot, 1983], for which H = 1/2 and the fractional Brow-
nian motion (fBm) introduced by Mandelbrot and Van Ness [Mandelbrot,
1983; Fabani and Sassi, 1996] motivated by the analysis of Nile river annual
discharges (0 ≤ H ≤ 1). In the classical case H = 1/2 the correlation R(τ)
vanishes for τ 6= 0 as expected (in Bm, successive increments are indepen-
dent and identically distributed Gaussian random variables). With fBm,
for H > 1/2 the correlation is positive, expressing persistence, and it be-
comes 1 when H = 1. For H < 1/2, the correlation is negative, expressing
anti-persistence, and it becomes −1/2 when H = 0.
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There is a close theoretical relationship between self-affine signals and
their power spectra. Remember that a structure function of the random
process Xn is defined as

SF(∆) ≡ 〈|Xn+∆ −Xn|2〉; (2.12)

the structure function of a self-affine process scales as SF(∆) ∼ ∆2H . A
classical argument relates the structure function of a stationary process with
its spectrum and indicates that a self-affine process has a power law spectrum
PSD(f) = Cf−α with α = 2H+1 [Osborne and Provenzale, 1989; Provenzale
et al., 1991].

The fractal dimension of the fractal curve can be computed by the equa-
tion

D =
2

α− 1
;

this relationship is valid only for 0 < H < 1, therefore for 1 < α < 3.
For α > 3 the curve ceases to be fractal (its Hausdorff dimension equals its
topological dimension) and for 0 ≤ α ≤ 1 the scaling exponent is zero and
the fractal dimension is infinite (as expected for white noise when α = 0).

Besides the spectrum regression technique, it is possible to analyze the
self-affine properties of the RR series by computing directly the scaling ex-
ponent H and then inferring the parameter α. From (2.11), by supposing
the signal self-affine, then

〈|RRn+∆ −RRn|〉 = ∆H〈|RRn+1 −RRn|〉;

thus a graph of 〈|RRn+∆ − RRn|〉 versus ∆ on a log-log plot is a straight
line whose slope is the value of H.

The scaling exponent H and the Hurst exponent, though related, assume
different values. The Hurst exponent is usually computed with the rescaled
range R/S statistics. Only skipping the integration step, at the beginning
of the computation of R/S, the Hurst exponent and H are identical (in the
assumption that the RR series can be modelled as fBM) [Mandelbrot, 1983,
chap. 39].

In the dynamical system theory, a strange attractor with fractal dimen-
sion D > 1 is an object which is differentiable along the direction of motion
and which can be fractal in some direction perpendicular to the direction of
motion. Are the fractal evidence of the RR series related to an underling low
dimensional dynamical system? Starting from a similar argument, a lot of
work has been made in the recent years to assess if the interbeat variability
can be modelled as produced by a low dimensional dynamical system. This
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is certainly still an open question (see chapter 5 for a proper discussion);
but the 1/f power spectrum is not a sufficient condition to state that a low
dimension dynamical system is a good model for the system. In fact, as we
realized in this section, proper self-affine colored noises display power law
spectral behaviour and a finite fractal dimension.

Generating Mechanisms

It is widely accepted that the HRV signal displays a 1/f power spectrum, at
the lower frequencies. But what is the mechanism which is able to generate
such a widespread behaviour? Two main groups of hypothesis have been
formulated [Rienzo et al., 1997]. Some researchers think that the 1/f trend
is a result of an underlying 1/f modulation of a number of factors affecting
blood pressure and heart rate variability. Some of this factors are:

• fluctuations in the electric potentials of the pacemaker cell membrane
at the level of the sinus node [Kobayashy and Musha, 1982];

• modulation induced by the renin-angiotensin system (that regulates
extracellular fluid volume) [Calcagnini et al., 1995];

• fluctuation at the organ level, including oscillations in metabolism,
changes in respiration and body temperature, changes in the state of
the autonomic neural centers;

• physical activities;

• modulation in the baroreflex sensitivity.

“The second hypothesis on the nature of the 1/f trend may be regarded
as a sort of “general law” which can apply also to fields other then car-
diology. According to this hypothesis the observed 1/f power law is the
result of the complex interaction between different precesses characterized
by a variety of time scales and simultaneously acting on the same system.
This hypothesis actually fits the reality of the cardiovascular system which
is under the concomitant action of many control mechanism with time scales
that ranges from seconds to several hours” [Rienzo et al., 1997]. Two recent
works deserve to be cited.

Hausdorff and Peng [1996] prepared a stochastic process made by sim-
ply summing up 8 independent inputs xi. At each time step the state of
xi changes with probability 1/τ1, where τ1 is the time constant of the in-
put. The time constants were chosen to be consistent with the physiological
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mechanisms, which are relevant to HRV variability modulation (e.g. respi-
ration, blood pressure). The model can mimic 1/f behaviour for about 4
decades if the amplitude of each noise input is identical; otherwise if each
input noise is allowed to vary, 1/f scaling is no longer obtained consistently.
The study suggests that the balance between different noise inputs is also
crucial to produce self-similar behaviour.

Pilgram and Kaplan [1999] tried a similar approach. They concate-
nated short segments of Gaussian white noise (α = 0) and Brownian mo-
tion (α = 2), selecting randomly among the two typology. In addition,
they superimposed to each segment a linear trend with a random direction
(matched at the endpoint), accounting for background environmental mod-
ifications. None of these three processes individually produce 1/f noise.
They found that, for model segment 32 points long, this simple model is
capable to produce a realistic time series with realistic 1/f power spectra.
The result suggests that the power-law structure of the HR signal may be
non-stationary over fairly intervals, similar to the 5-min segments commonly
used in short-term HRV analysis. Finally, in term of control system, Brown-
ian motion corresponds to control being turned off and white noise indicates
that control is on. The model indicates that HR series can be composed of
periods during which the system drifts from an equilibrium point (Brownian
motion) interrupted by intervals during which HR is locked to a required
state by control mechanisms (white noise).

2.3.2 Detrended Fluctuation Analysis

Detrended fluctuation analysis (DFA) is a fractal-related method that pro-
vides for estimation of the scaling exponents α (the slope of the power spec-
trum). As previously underlined, the heartbeat time series is highly non-
stationary. One of the main causes of non-stationarity is the continuous
change in the environmental conditions. If the interest of the researcher
is into the cardiovascular control system, which is mostly the case, modi-
fication in the activity due to external stimuli should be regarded as noise
and eliminated. These are the aims of the “detrended fluctuation analysis”
(DFA), a method introduced by Peng et al. [1995].

The RR series is integrated, after subtraction of the mean value

Yk =
k∑
i=1

RRi − µNN ;

next the integrated time series is divided into boxes of equal length, n. In
each box a least-square line, representing the trend in that box, is fit to the
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Fig. 2.6: Detrended Fluctuation Analysis: the standard deviation of the integrated
and detrended series F (n) is plotted vs. n for a ≈ 24-hours RR sequence (healthy 41-
years old subject). The slope of F (n) over the range n ∈ [100, 4000) is called “long-term
fractal scaling exponent” and termed ν2. Over short scale the graph of F (n) displays a
different evolution: this second slope ν1 (“short-term fractal exponent”), usually computed
for n < 16, is normally bigger than ν2 (at least for normal subjects).

data and then subtracted. The standard deviation of the integrated and
detrended series (after being divided into blocks of length n) is named F (n).

The computation is repeated over all time scale (box sizes). The graph
of F (n) versus n on a log-log plot is a straight line whose slope is the value
of ν2, the so called “long-term fractal exponent”. A slope greater than 0.5
(white noise) and less than 1.0 (1/f noise) indicates long-range correlations16

The fractal exponent can be related to the slope of the power spectrum
α by the equation α = 2ν2 − 1 [Pilgram and Kaplan, 1998].

Figure 2.6 presents the results for a DFA computed on a healthy subject.
The scaling exponent is ν2 = 1.00, corresponding to 1/f noise (α = 1).

The different scaling at the lower scales (n < 16) suggested the intro-
duction of a second exponent ν1 (see [Stanley et al., 1999] and references
therein). For normal subject it is usually larger than ν2.

16 Detrended fluctuation analysis is generally performed through an alternative and
equivalent approach, numerically more efficient. The procedure is described in footnote
14 of [Peng et al., 1994]. We computed the DFA adapting for Matlabr the code present
in the PhysioToolkit database [Goldberger et al., 2000].
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2.3.3 Generalized Structure Functions

The word “fractal” is used to express a basic concept rather than being
rigorously defined. Several definitions can be set out, each of them tailored
to a specific problem17. Some general aspects of a fractal curves are: (i)
self-similarity (the entity contains scaled copy of itself) and (ii) the quality
of being everywhere continuous but not differentiable.

RR sequence are discrete series of events. A fractal sequence is essentially
a self-affine curve (see equation (2.11)). Therefor in the following fractal and
self-affine will used as synonymous.

It has been recognized that most fractals in nature are actually composed
of an infinite set of interwoven subfractals. This structure becomes apparent
when a particular measure µ supported by the set is considered. If the
measure has different fractal dimension on different parts of the support,
the measure is named multifractal [Feder, 1988]. For a formal definition see
Halsey et al. [1986] and Muzy et al. [1993].

Multifractality is a property of a measure which is supported by a fractal
set. In the following, for simplicity, we will refer to fractal sets supporting
mono-fractal measures as monofractal and to fractal sets supporting multi-
fractal measures as multi-fractal.

The most important request for a measure is that it should be positive
definite. For a sequence Xn, like the RR series, proper measures may be
µn = X2

n or µn = |Xn+1 − Xn|2. After the definition of a measure, the
extraction of the generalized multifractal dimension is, commonly, performed
by mean of a box-counting method [von Hardenberg et al., 2000]. As a first
step, the measure is integrated over intervals of length ∆, obtaining a new
series ri(∆), given by

ri(∆) =
∆∑
j=1

µ(i−1)∆+j

for i ∈ [1, N∆ = N/∆]; then the partition function

B(∆, q) =


∑N∆

i=1 [ri(∆)]q[∑N
n=1 µn

]q


1
q−1

is constructed. In the limit for ∆ → 0, a fractal measure is characterized by
a scaling behaviour of the partition function,

B(∆, q) ∼ ∆Dq ,

17 Mandelbrot [1983] underlines the difficulty of a universal definition.
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where Dq is the generalized fractal dimension. If all the Dq coincide with
D0, the measure is monofractal. On the contrary, if the spectrum of the
generalized dimension decreases, Dq < Dp for q > p, the measure is multi-
fractal. The exponents Dq are usually computed as slopes of least square
lines in a log-log graph of B(∆, q) vs ∆.

The spectrum of generalized fractal dimensions can be associated with
the presence of nonlinear correlations in the signal. Therefore a discussion
on the presence of a multifractal spectrum in the HRV signal implies de-
bating about its nonlinear nature. Being the topic really controversy, we
would like to employ a robust method but the box-counting technique is
not good enough. In fact, as von Hardenberg et al. [2000] recently pointed
out, spurious multifractality can be detected even if the input sequence is:
(i) a white noise with exponential or hyper-exponential distribution; (ii) a
nonlinearly-filtered, linear autoregressive process.

A more robust approach is through of the generalized structure functions
that not require the introduction of a measure. The method is a gener-
alization of equation (2.12); for a random process Xn, GSF are defined18

as
GSF(∆, q) ≡ 〈|Xn+∆ −Xn|q〉.

If the analyzed signal has fractal nature, it does exist a scaling region where
GSF(∆, q) ∼ ∆qhq . When hq is constant with q (hq = h2 = H, ∀q), the
signal is monofractal (or self-affine), like in the case of standard Brownian
motion and white noise19. A multifractal signal is instead characterized by

18 The works on this subject were pioneered by Frisch and Parisi [1976], in the context of
fully developed turbulence. Given a velocity field v(x), they defined generalized structure
function in the limit l→ 0

S(l, q) = 〈|v(x+ l)− v(x)|q〉x ∼ lqhq , (2.13)

where 〈 〉x is the mean value computed over x.
19 A couple of examples. Consider a Gaussian white noise WGN

d
= N(µ, σ); the gener-

alized structure functions can be computed analytically and are constant. In fact

GSF(∆, q) =
σq2q

√
π

Γ

(
q + 1

2

)
∼ ∆0,

where Γ() is the Gamma function, therefor hq = 0 for each q. Equivalently, for the self-

affine random walk xi+1 = xi + wi+1, where wi
d
= N(0, σ),

GSF(∆, q) =
σq2q/2

√
π

Γ

(
q + 1

2

)
∆q/2 ∼ ∆q/2,

that is, hq = 1/2 for every q.
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the scaling exponent decrease for increasing q (hq < hp for q > p). Once
more, it is useful to underline that monofractality or multifractality do not
necessary imply the presence of deterministic chaos.

The generalized fractal dimension spectrum Dk, computed through the
box-counting method, can be obtained also from the scaling exponents hq
[Muzy et al., 1993] via the Legendre transform

Dk = min
q

[qk − qhq + 1]. (2.14)

2.3.4 Wavelet-Transform Modulus-Maxima

The generalized structure functions approach requires the process Xn to be
stationary, at least at the scales of interest. To overcome this possible diffi-
culty, recent works [Amaral et al., 1998; Ivanov et al., 1999; Stanley et al.,
1999] use a different method to compute the generalized dimensions spec-
trum from a time series. The technique is called wavelet-transform modulus-
maxima (WTMM) and it was introduced by Muzy et al. [1993] (see also
[Muzy et al., 1994]). Wavelets can remove polynomial trends that could
cause box-counting techniques to fail in quantifying the local scaling of the
signal.

The Wavelet transform of the sequence Xi is defined as:

Tψ[Xi](b, a) =
1
a

∑
i

ψ

(
i− b

a

)
Xi,

where a > 0 is a scale parameter and b a space position. The analyzing
wavelet ψ is chosen to be orthogonal to some low-order polynomials:∫ ∞

−∞
xmψ(x)dx = 0, ∀m : 0 ≤ m ≤ N.

A class of commonly used analyzing wavelet satisfying this condition is given
by the successive derivatives of the Gaussian function

ψ(N)(x) =
dN (e−x

2/2)
dxN

.

The higher the order, N, of the derivative, the higher the order of the poly-
nomial trends removed.

The WTMM method defines the partition function

Z(a, q) =
[∑

max
b
|Tψ[Xi](b, a)|

]q
,
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where maxb f(b) are all the local maxima of the function f(b). In the limit
a→ 0, the partition function

Z(a, q) ∼ aτ(q).

Multifractal processes are characterized by a non linear function τ(q), mono-
fractal by a linear one. The generalized dimension can be computed by mean
of the Legendre transform

Dk = min
q

[qk − τ(q)]. (2.15)

Comparing equation (2.15) with (2.14), the relation among the two scaling
exponent τ(q) and hq (the structure function scaling parameter defined in
the previous section) results

τ(q) = qhq − 1.
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Fig. 2.7: Two-dimensional histogram computed on a ≈ 24-hours Holter recording.
Night and day variability are well recognizable. ∆ is the first numerical minimum of the
RR autocorrelation function. The series is the same employed in panel (a) of figure 2.2.

2.4 Other Techniques: Recurrence Maps

Recurrence maps (or “scattergram”) represents a very common tool, which
can be useful in understanding the attractor morphology with low order
dynamical system, in the hypothesis that the system is bounded onto the
stable nonlinear manifold.

A recurrence plot of a series Xn is a graph of Xn against Xn+∆, where
∆ is a time lag. ∆ is usually chosen to be 1; otherwise, if the correlation
between adjacent values in the sequence is too strong (it would hide any
other useful information), it is better to use larger value (for example the
first minimum of the autocorrelation function or the first minimum of the
mutual information function).

The slope αR of the line RRi+1 = αRRRi + β is a classical heart rate
variability index. It is fitted with a standard linear regression technique onto
the variables (RRi+1, RRi).

In figure 2.7, a two-dimensional histogram is computed for the variable
(RRi+∆, RRi). The graph is basically equivalent to a recurrence map.

2.5 Other Techniques: Approximate Entropy

Approximate Entropy (ApEn) is a “regularity statistic” that quantifies the
unpredictability of fluctuations in a time series. The presence of repetitive
patterns makes the time series more predictable.
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The statistic was introduced by Pincus [1991]. Starting from a sequence
ui, with i = 1, 2, · · · , N , the first step is the construction of the vectors

xi =
[
ui ui+1 ui+2 . . . ui+m−1

]
,

where m ∈ N. The distance between vectors xi e xj is defined as the maxi-
mum difference in their respective scalar components, d[xj , xj ] = ‖xi−xj‖∞.
For each vector xi, Oi(m, r) is the number of vectors xj , j ≤ N − m + 1,
such that d[xj , xj ] ≤ r, where r ∈ R+. Then construct

Ci(m, r) =
Oi(m, r)
N −m+ 1

Φ(m, r) =
∑N−m+1

i=1 log Ci(m, r)
N −m+ 1

Ci(m, r) defines within a tolerance r the regularity, of frequency, of patter
similar to a given patter of length m.

Pincus named approximate entropy

ApEn(m, r) = lim
N→∞

[Φ(m, r)− Φ(m+ 1, r)].

It measures the likelihood that runs of patterns that are close for m obser-
vations remain close on next incremental comparison [Pincus, 1995]. A time
series containing many repetitive patterns has a relatively small ApEn, a
less predictable process has a higher ApEn .

The parameter m specifies the length of patters that are compared. The
bigger m, the higher the level of detail required. r defines the “noise” level
accepted in the comparison: differences, smaller than r, between two vectors,
in absolute value, are considered not relevant; r is usually expressed as a
figure of the standard deviation of ui.

The definition is clear after reorganizing the terms

ApEn(m, r) = lim
N→∞

[∑N−m+1
i=1 log Ci(m, r)
N −m+ 1

−
∑N−m

i=1 log Ci(m+ 1, r)
N −m

]

= lim
N→∞

N−m∑
i=1

log[Ci(m, r)/Ci(m+ 1, r)]
N −m

= −meani

[
log

Ci(m+ 1, r)
Ci(m, r)

]
The quantity Ci(m+1, r)/Ci(m, r) is the conditional probability that |uj+m−
ui+m| ≤ r given that |uj+k − ui+k| ≤ r for k = 0, 1, . . . ,m− 1.
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The definition is given in the limit N →∞, and in any practical situation
it is necessary to employ an estimator. The most common one is

ApEn∗(m, r) =
∑N−m+1

i=1 log Ci(m, r)
N −m+ 1

−
∑N−m

i=1 log Ci(m+ 1, r)
N −m

[Pincus and Huang, 1992], where the limit is simply skipped.
Approximate entropy has been fruitfully employed to quantify the regu-

larity of RR series and has proved to be a reliable index20. Nevertheless, it
is important to underline that ApEn is only a regularity statistic and not a
consistent estimate of the K-S entropy, though similarity in the definition.
For this reason any speculation on the deterministic nature of the process
under analysis using ApEn is absolutely not well posed. Its only application
is the comparison among time series based on their regularity. The intu-
ition motivating ApEn is that if joint probability measures that describe
each of two process are different, then their marginal distribution on a fixed
partition, given by conditional probability, are likely different.

20 A review on approximate entropy, containing a fast numerical code, is [Fabani and
Sassi, 1996]; see also appendix C.
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Fig. 2.8: The probability density function (pdf) for a RR series belonging to a 38-
years old healthy subject (thick line) is compared with the pdf of a set of surrogate data
obtained with phase-randomization (yellow) . The surrogation process, though maintain-
ing the autocorrelation function, renders the pdf normal. The dotted line is the normal
distribution obtained with a MLE-estimator from the surrogate data.

2.6 Testing for Nonlinearity

Two distinct reasons can motivate a nonlinear approach to the analysis of
a time series, like the interbeat sequence. The first may be that the arsenal
of linear methods has been exploited thoroughly but all the efforts left cer-
tain structures in the time series unaccounted for. Otherwise it is possible
that certain a priori knowledge on the structure of the system leads to the
inclusion of nonlinear components. The latter may be the case of the car-
diovascular system, where several nonlinear mechanisms are accounted for;
but the fact that a given system includes nonlinear components does not
necessarily imply that nonlinearities are also contained in the specific signal
we measured from it (e.g. reasonable nonlinearity in the heart control do
not hint that the RR series contains itself this nonlinearity). Consequently,
for a data driven analysis, the application of nonlinear time series methods
has to be justified by establishing nonlinearity in the time series [Schreiber
and Schmitz, 2000].

The nonlinear nature of the RR signal was firstly suggested by Gold-
berger et al. [1990]. After him, given the importance of the problem, several
studies were performed to inspect the speculated nonlinearity in the RR
series. Nevertheless the issue is still an open question.

In time series analysis literature, the most popular tool developed to
verify the nonlinear nature of a stationary process is the surrogate data
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method. Stated the classical Occam’s razor that given two explanations for
data we should favor the “simpler” one, surrogate data techniques allow to
find the more uncomplicated explanation that cannot be ruled out based on
the data we have in hands. The task compares a nonlinear discriminating
statistic, computed on the measured data, to its empirical distribution on a
collection of Monte Carlo realizations of the null hypothesis.

To apply the method, it is, firstly, necessary to postulate the null hypoth-
esis (NH), on the data under analysis, which the test should, if necessary,
falsify. The null may be, e.g., “the data are colored noise”. Then suitable
synthetic series consistent with the NH, the surrogate data, are prepared.
These sequences share with the original ones certain properties, invariant
under the NH. Finally the null is attempted to be rejected by comparing the
value of a nonlinear parameter taken on by the data with the same parame-
ter computed on the surrogate series. If no differences arise among the two
it means that the index is measuring characteristics participated by all the
sequences, thus the null cannot be rejected safely.

The described process of using surrogate data to find the range of values
for data consistent with NH is called bootstrapping.

Several surrogation methods have been developed, each suitable for par-
ticular null hypotheses. In the following section we present a few of them21.

2.6.1 Phase-Randomization

Any stationary linear process is fully specified by its autocorrelation function,
therefor by the its power spectrum.

Thus (i) computing the Fourier transform of the original sequence, (ii)
replacing the phases with random number uniformly distributed between
0 and 2π and (iii) transforming back the result, shall produce a surrogate
sequence having the same autocorrelation function of the original one. In
fact the procedure does not alter anyhow the power spectrum of the process
[Kaplan and Glass, 1995].

The method of creating surrogate data by adding random phases to the
Fourier transform of a process is called phase-randomization. The null hy-
pothesis it tries to nullify is: “the signal is generated by a linear precess
(colored noise)”.

21 The technique presented are meant to construct constrained realizations [Theiler
and Prichard, 1996]: measurable properties of a time series are conserved rather than
a speculated underlying model. They are certainly appropriate for a broader class of
problems.
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2.6.2 Amplitude Adjusted Fourier Transform

Unfortunately, surrogate data obtained using phase-randomization of the
Fourier transform have a Gaussian distribution of values. Many time series,
among which RR sequence, do not have a normal distribution, and there-
fore several nonlinear techniques, influenced by non-normal distribution of
data, are cheated by the surrogated sequences. An example is presented
in figure 2.8 where we compare the original distribution with the one of
the surrogate data. The Gaussian distribution, fitted via MLE estimator,
approximates very well the surrogate data one.

Non-Gaussian distribution can be created by a linear stochastic process
passed through a nonlinear static (not depending on time) filter: non linear
measurement distortion are a typical example of static filter use.

Theiler et al. [1992] proposed a method, called Amplitude Adjusted Fou-
rier Transform (AAFT), that avoids being mislead by nonlinear static fil-
ters. The null hypothesis is in this case: “the signal is generated by a linear
stochastic process distorted by a nonlinear, monotonically increasing, filter”.

The route to obtain the surrogate series s̃n from sn, based on AAFT,
is: (i) sn is rank-ordered according to a set of Gaussian random number;
this makes the resulting series gn = r(sn) Gaussian, though following the
time evolution of sn; (ii) gn is phase-randomized to obtain g̃n; (iii) g̃n is
rank-ordered according to the distribution of the original data sn leading to
the final surrogate series s̃n = r̂(g̃n).

s̃n has, by construction, the same distribution of amplitudes of sn but
only approximately the same power spectrum22. Such discrepancy can lead
to false rejection of the null hypothesis. To overcome these difficulties,
[Schreiber and Schmitz, 1996] developed a further refinement (IAAFT; “I”
stands for “iterated”) of the algorithm. In this way they correct iteratively
the mismatch among the spectra under a desired threshold. The improve-
ment lies only in the preparation of the surrogate data, thus the null hy-
pothesis remains unchanged.

Being (a) ln a sorted version of sn and (b) Sn the amplitude of the Fourier
transform |F{sn}|, IAAFT surrogate data are obtained: (i) sn’s amplitudes

22 The idea underlying AAFT is that the data may have been produced by filtering an
original gaussian sequence wn through a nonlinear static filter expressed by the monoton-
ically increasing function h(x). In this hypothesis and in the limit of N →∞, where N is
the number of points in the sequence, r(x), the rank-ordering procedure, approaches the
inverse of h(x) with mean square fluctuation proportional to 1/N . Discrepancies in the
power spectra are due to the differences between the two nonlinear rank-ordering functions
r(x) and r̂(x); the AAFT algorithm introduces a bias towards a flat spectrum [Schreiber
and Schmitz, 1996].
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are randomly shuffled to obtain s(0)n . (ii) As the Fourier transform s̃
(i)
n of s(i)n

is prepared, the Fourier amplitude of s̃n are replaced with Sn. The spectrum
is transformed back: s̄(i)n = F−1{Sn exp[jω(i)]}, where ω(i) are the phases
of s̃(i). At this stage, the power spectra of the intermediate surrogate series
s̄
(i)
n and of the original sn are identical; (iii) s̄(i)n is rank-ordered according

to the original amplitudes ln to obtain s
(i+1)
n . Steps (ii) and (iii) have to

be repeated until the differences between |s̃(i+1)| and Sn can be considered
negligible. The final surrogate series, s(i+1)

n , has, by construction, the same
amplitude distribution of the sn and the same power spectrum, with good
approximation.

2.6.3 Remarks

The null hypothesis of a Gaussian linear process filtered through a monotonic
function (AAFT and IAAFT) is quite general, nevertheless its rejection does
not imply nonlinear dynamics. A statistical test can only be falsified; it is
improper to make positive statement.

When producing surrogate data, no zero-padding can be employed to
perform quickly any Fourier transform. Padding introduces structures into a
time series that will not exists in the surrogates any more, leading necessarily
to misleading results. Mixed-radix-fft algorithms may be useful to reduce
the number of points truncated at the end of each series, without losing too
much computational performances.

Any mismatch between the beginning and the end of a time series poses
problems with Fourier transform. Usually, edge effects are treated by win-
dowing and zero padding, both to avoid with surrogate data. The problem
is specially effective with phase-randomization, when the addition of high
frequency components to the series is evident. To prevent edge mismatch a
sub-interval of the recording can be chosen so that the discrepancies among
the begin and the end of the series are minimized [Schreiber and Schmitz,
2000]23.

23 Schreiber and Schmitz [2000] suggest to measure the end point mismatch by

γjump =
(s1 − sN )2∑N

i=1(sn − 〈sn〉)2
,

where s1 and sN are the first and the last point in the sequence sn.
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Abstract

In this chapter, we present the results obtained analyzing the ≈ 24-hours RR series,
in the Noltisalis database. Noltisalis is a multicentric research program which
aims at the nonlinear analysis of heart rate variability series. it is composed by
several italian university departments and rehabilitation clinics. We focused on the
multifractal characteristics of the HRV signal through two approaches: generalized
structure functions, a tool proposed in the context of fully developed turbulence, and
wavelet-transform modulus-maxima. This last method, recently introduced, should
be less sensitive to non-stationarity. A large number of classical parameters, for the
analysis of the HRV signal over long time scales, have been considered to set up
a proper comparison. We considered classical time-domain indexes, “monofractal”
characteristics (1/fα spectrum; detrended fluctuation analysis) and a regularity
statistic (approximate entropy).

The spectrum of generalized fractal dimensions can be associated with the pres-
ence of nonlinear correlations in the signal, and possibly, with the nonlinear nature
of the signal HRV. To verify this last hypothesis, we computed the generalized struc-
ture function also on a set of surrogate data (amplitude adjusted surrogate data).
In 32 cases, the multifractal spectrum of the original RR series differs from those
obtained from the surrogate signals significatively (t-test), this supporting the idea
of a RR nonlinear nature. However, absolute values of the multifractal exponents
hq are very small and non-stationarity effects should be further investigated.
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3.1 Introduction: the Noltisalis Database

The Noltisalis1 database was collected by the cooperation of several uni-
versity departments and rehabilitation clinics2 in Italy. The acronym Nolti-
salis stands for “Nonlinear time series analysis” and highlights the objec-
tives of the multicentric project: to study the nonlinear nature of the heart
rate variability signal from a time series perspective.

The database is composed by several signals:

1. 50 RR series extracted from 24-hours Holter recordings (they have
been collected in five different subsets; see table 3.1);

2. 5 RR series extracted from regular ECG recordings of normal sub-
jects in stationary and controlled conditions (seated on armchair, no
external noises, low-intensity lights, room at constant temperature);

3. synthetic RR series (and their surrogate data [Chang et al., 1994]),
obtained with the Ornstein-Uhlenbeck process [Theiler et al., 1992]
(2 series) and with the baroreflex-regulation model [Cavalcanti and
Belardinelli, 1996] (2 series);

4. test series obtained from classical low-dimensional nonlinear determin-
istic systems (Henon, Lorenz and Rossler; 5 series each).

Five subsets compose the 24-hours Holter series data set: each subset
refers to a particular health state of the subject on whom the recording was
made. Apart from healthy adults, other four pathologic cardiac conditions
are present as reported in table 3.1.

3.2 Methods

ECG data were recorded using different Holter devices. they are reported in
table 3.1; The last column of table 3.2 displays, for each recording, the sam-
pling frequency. Beats were labelled using automated procedures through

1 The works presented in this chapter were performed on the first version of the database,
but have been made coherent with the third released (March 2000). The database can
be requested writing to signorini@biomed.polimi.it; it is distributed only on CD-rom
support.

2 Dipartimento di Elettronica, Informatica e Sistemistica (Università di Bologna), Isti-
tuto per i Circuiti Elettronici (C.N.R., Genova), Dipartimento di Bioingegneria (Politecni-
co, Milano), Fondazione Salvatore Maugeri (Pavia), Istituto di Fisiologia Clinica (C.N.R.,
Pisa), Istituto di Biofisica (C.N.R., Pisa), Dipartimento di Informatica e Sistemistica (Uni-
versità “La Sapienza” di Roma).



3.2. Methods 51

Population Code Series Location Device

normal NR 10 Veruno custom
hypertension IP 10 Roma Del Mar Avionics
(after) myocardial infarction MI 10 Veruno custom
heart failure (A) SC 5 Veruno custom
heart failure (B) SC 5 Montescano Oxford Medilog Excel
heart transplanted TR 10 Montescano Oxford Medilog Excel

Tab. 3.1: The 50 RR 24-hours series in the Noltisalis database are classified into 5
populations, according to the health state of the subject to whom the recording belongs. In
table the five populations are indicated along with the number of subjects in each of them;
“Location” refers to the locality where the recording were performed. Some recording were
obtained with custom Holter recorder (“custom”).

a proper analysis software. Labels for detected beats were: N (normal), V
(ventricular ectopic), S (supraventricular ectopic) or X (artifacts). Subse-
quently, experienced Holter scanning technicians manually verified the an-
notations.

Using this procedure, R-wave peaks were determined with a resolution
value in the range 1-8 ms. The finite resolution implies that estimates of the
interbeat intervals are affected by a noise due to estimation error (see sec-
tion 1.5 for more details). The signal-to-noise ratio3 over the whole database,
ranges from 25 to 51 dB.

The populations are not exactly age-matched4: this is mostly due to the
fact that most cardiac pathological states are age dependent.

3.2.1 Artifacts Detection

The quality of the Holter recordings is high. Nevertheless the acquisition
process lasts many hours, during which the subject moves or even exercises.
The sweat or the movement of the electrodes can, therefore, corrupt the
ECG signal. The peaks detection procedure marks low quality intervals,

3 The signal to noise ratio was computed on the spectrum of the signals: SNR =
10 log10 SDNN2/E[u2

i ]. See sections 2.1.1 and 1.5 for the definitions of SDNN and E[u2
i ],

respectively.
4 The mean ages for the five populations are (standard deviation within brackets):

NR 42.2(±6.4)
IP 40.7(±1.1)
MI 50(±10.2)
SC 53.6(±11.2)
TR 44.9(±14.8).
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fc (Hz) start (h) length (h) RR S V X Age

NR01 250 20:30 21:40 82592 1 1 77 38
NR02 250 12:40 23:50 103821 8 0 15 46
NR03 250 8:40 24:00 102493 224 0 27 56
NR04 250 10:40 23:10 105142 12 3 256 40
NR05 250 11:40 21:10 117284 3 2 127 34
NR06 250 11:20 23:10 104495 14 0 288 35
NR07 250 8:50 24:30 107056 18 1 205 41
NR08 250 8:30 24:50 104589 7 0 36 46
NR09 250 9:30 24:40 111285 9 432 17 43
NR10 250 11:40 19:10 81774 75 0 5 43

IP01 512 9:41 24:46 117022 9 0 127 40
IP02 512 10:50 22:06 106386 12 0 49 43
IP03 512 10:01 23:56 116720 41 0 224 42
IP04 512 12:00 21:48 103079 39 332 595 41
IP05 512 9:33 20:23 97820 7 1 213 41
IP06 512 9:30 23:48 110618 5 4 95 40
IP07 512 11:47 22:56 113641 28 2 318 40
IP08 512 12:12 22:47 98770 5 0 83 40
IP09 512 11:42 22:47 100255 4 1 24 40
IP10 512 15:17 21:14 113242 2 0 21 40

MI01 250 9:20 24:30 87636 11 10 188 60
MI02 250 9:30 22:40 108721 11 197 189 33
MI03 250 9:10 24:30 108243 33 5 50 56
MI04 250 10:30 23:00 125628 119 242 47 34
MI05 250 8:40 22:60 85599 6 31 249 61
MI06 250 14:50 24:30 100499 44 9 97 52
MI07 250 15:10 23:00 115571 428 197 23 48
MI08 250 11:10 23:30 102814 18 25 68 43
MI09 250 15:20 18:00 74967 35 38 87 57
MI10 250 15:40 24:40 76963 46 5 6 56

SC01 250 11:10 23:0 122775 71 88 67 47
SC02 250 8:50 23:20 103783 28 37 0 64
SC03 250 9:30 24:40 97335 21 301 13 68
SC04 250 9:20 23:10 102990 33 192 55 64
SC05 250 11:30 21:40 95138 10 4 37 53
SC06 128 10:25 22:07 95869 0 926 0 56
SC07 128 8:45 22:56 139625 0 122 0 36
SC08 128 9:27 22:55 127445 0 40 0 36
SC09 128 11:36 22:57 90730 0 123 0 60
SC10 128 11:47 22:57 95755 0 106 12 52

TR01 128 9:44 22:55 122042 0 26 0 18
TR02 128 11:10 22:56 130619 0 6 1 46
TR03 128 12:13 22:55 131055 0 1 0 60
TR04 1024 9:33 24:50 104097 0 0 20 35
TR05 1024 11:18 23:58 117020 0 5 0 54
TR06 1024 10:30 23:17 97639 0 5 30 46
TR07 128 9:44 22:56 103678 0 3 0 62
TR08 128 9:00 22:57 112149 0 21 2 24
TR09 128 10:27 23:35 128230 0 0 54 53
TR10 128 11:10 22:55 113901 0 43 2 51

Tab. 3.2: Available information for each subject belonging to the Noltisalis database.
fc is the sampling frequency (Hz); RR is the number of points in the series; S, V e X are the
number of intervals labelled, respectively, as supraventricular, ventricular and artifacts.
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for which it is impossible to locate any QRS complex. In the RR series
they appear in distances, in milliseconds, among the last R peak, before the
spoiled segment, and the first one, after it. This choice should ensure that
the original temporal structure of the signal is preserved, as it is expressly
required to employ several of the techniques presented in the following.

Dramatically, several of the series contain artifacts which are marked
as normal beats (N), and not with the proper label (X). This is due to a
defect in the labelling software employed in one of the rehabilitation clinic.
Therefore, it becomes necessary to set on a standard procedure able to detect
artifacts masked as normal beats and to apply the same criterium to the
whole database.

Ventricular ectopic and supraventricular ectopic beats need also a cor-
rection. In fact they generate in the myocardial muscular tissue or, anyway,
outside the proper pacemaker, the sinoatrial node. An ectopic beat usually
happens just after the end of the refractory period and before the next im-
pulse from the SA node (SAim1). When SAim1 arrives, the muscular tissue
is in refractory period as well and there’s no consequent contraction. In the
ECG recording this ends in a shorter first RR interval (the ectopic beat ar-
rives before SAim1) and in a longer second RR (SAim2 is fired autonomously
from the ectopic beat). If the topic of the study is the regulation of the heart
rate, ectopic beats must be regarded as artifacts, being independent from
any regulation input. The labelling software recognizes ectopic beats by the
absence of the P wave, marking them correctly.

In this section we present the algorithm we developed to detect artifacts.
Obviously, there is a compromise between specificity and sensitivity: we can
afford the presence of a few not-detected artifact, if they are comparable to
the surrounding RR intervals, but we do not want the algorithm to correct
too many true-normal intervals. The procedure is described step by step:

0th PREPROCESSING: A preprocessing step avoids the presence of RR points
considered meaningless. Intervals which undergo one of the two condi-
tions RRi > 10000 or RRi ≤ 0 are considered anomalous and replaced
with the mean value of the whole sequence.

1st LOCALIZATION: The points that need to be fixed are marked if they un-
dergo one of following criteria:

1. they are already marked as artifacts (“X”) in the labels file linked
to the data;
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2. are marked as artifacts the RRi points that undergo the condition
|RRi−B1

i | > 10 std(RR−B1) where std() is the standard devia-
tion. Ectopic beats (“V” ventricular or “P” post-ventricular) are
excluded a priori. The baseline B1

i is computed by filtering the
RR series with a 17 points rectangular window, at first, applied
with a forward step, and then with a backward step to avoid the
introduction of delay. This procedure is necessary to eliminate
spurious trains of spike.

3. A RR0 point, equal to the mean value of the signal, is added at
the begin of the sequence, then the series Ii = RRi+1 − RRi is
computed. The distribution of Ik is estimated with a normalized
histogram with bins width of 20 ms (see section 2.1.2). A Lévy
stable distribution is fitted to the normalized histograms.
Using the Lévy distribution so estimated, is computed the value
I1/1000 such that P (I1/1000, α, γ) = 1/1000. If I1/1000 is greater
than 1000, than it is set I1/1000 = 1000.
Are marked as artifacts the RRi points that undergo both the
two conditions |Ii| > I1/1000 and |RRi − B1

i | > 4 std(RR − B1).
As before, ectopic beats are excluded a priori.

2nd CORRECTION: A first correction is performed on ectopic beats and arti-
facts with a linear interpolation on the two surrounding points, leading
to a new RR1 series.

A low pass filter mask with cutting frequency 0.01 Hzeq is constructed
with standard windowing technique using an Hanning five points win-
dow. Then the filter is applied to the RR1 sequence in two steps, the
first forward and the second backward. This is made to avoid, like
before, the introduction of any delay. We get in this way the RR2

signal.

Points needing correction in RR are now replaced with the correspon-
dent in RR2. In this way we can make corrections with a moving
average mean, avoiding the bias coming from the presence of points
very far from a reasonable value.

The algorithm has been employed on every RR series in the database.
Table 3.3 reports the corrections made on each signal.
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E X A X∗ Total

NR1 2 77 0 86 88
NR2 8 15 0 67 75
NR3 224 27 0 34 258
NR4 15 256 0 212 227
NR5 5 127 0 187 192
NR6 14 288 0 64 78
NR7 19 205 0 147 166
NR8 7 36 0 110 117
NR9 441 17 0 14 455
NR10 75 5 0 97 172

IP1 9 127 0 216 225
IP2 12 49 0 88 100
IP3 41 224 2448 327 2816
IP4 371 595 0 638 1009
IP5 8 213 0 212 220
IP6 9 95 0 156 165
IP7 30 318 1 363 394
IP8 5 83 0 86 91
IP9 5 24 0 24 29
IP10 2 21 0 118 120

MI1 21 188 0 107 128
MI2 208 189 0 143 351
MI3 38 50 0 77 115
MI4 361 47 0 392 753
MI5 37 249 0 278 315
MI6 53 97 0 113 166
MI7 625 23 0 622 1247
MI8 43 68 0 153 196
MI9 73 87 0 105 178
MI10 51 6 0 42 93

SC1 159 67 0 602 761
SC2 65 0 0 273 338
SC3 322 13 0 329 651
SC4 225 55 0 219 444
SC5 14 37 0 55 69
SC6 926 0 0 875 1801
SC7 122 0 0 45 167
SC8 40 0 0 81 121
SC9 123 0 0 209 332
SC10 106 12 0 112 218

TR1 26 0 0 80 106
TR2 6 1 0 97 103
TR3 1 0 0 163 164
TR4 0 20 0 112 112
TR5 5 0 0 277 282
TR6 5 30 0 43 48
TR7 3 0 0 260 263
TR8 21 2 0 119 140
TR9 0 54 0 144 144
TR10 43 2 0 123 166

Tab. 3.3: Using the technique described, the RR data have been corrected. In this
table, for each series, the amount of changes made are reported. The labels mean: E
ectopic beats, X declared artifacts, A anomalies and X∗ effectively found artifacts. Total
is the total number of changes made on the series.
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3.3 Results

The work on the Noltisalis database has two main objectives: (i) to gain
additional information on the long period behaviour of the cardiovascular
system and (ii) to test statistical indexes, able to significantly discriminate
pathological subjects, with a possible diagnostic application.

The new information gained within objective (i) could be used, in the
future, to construct a new model of the heart rate generating mechanism or
to refine an existing one.

The two aims would be pursued at the same time, following the order we
used along chapter 2. Multifractal analysis is the more advanced technique
presented; it will be introduced at the end of this section. Nevertheless the
sections coming first are fundament to focus the problem and make possible
a real comparison. In fact, a more complex study would be useless if simpler
approaches were satisfactory. We will prove that multifractal analysis is a
real improvement with respect to the other techniques considered.

3.3.1 Statistical Characterization

Classical Statistics

Classical statistics are time-domain measures of heart rate variability, com-
monly employed in medical researches. As described in section 2.1.1, the
Task Force [1996] suggested, among the huge number of possible time-
domain indexes, a set of four measures, that highly summarize all the others.

We computed the values of SDNN, RMSSD, SDANN and HTI for each
recording in the database. In table 3.4 are reported the mean values and the
standard deviations. The value of the mean RR interval, µNN, is included
as a reference, but it can not be considered relevant as it depends largely on
parameters which are external to the current analysis (age, fitness, . . . ).

The estimation of the probability density of the RR intervals is necessary
to compute the “Heart Triangular Index”. The task was performed by means
of normalized histograms (with a bin width of 3 · 7.8125ms). In figure 3.1
the mean densities for the five populations are presented. The HTI index,
inversely proportional to the peak of the density, in average decreases from
NR to TR subjects.
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Fig. 3.1: For each RR recording in the Noltisalis database, a normalized histogram
has been computed using a bin width of 3 · 7.8125ms (see caption of figure 2.1 for further
details). Each density was, firstly, re-scaled by the median value (RR∗ = RR − ξ0.5)
and then a “mean” histogram was computed averaging over the densities within each
populations. In the four panels the NR mean distribution is compared with the four
pathological ones. The NR histogram (thick line) displays a slight bimodal behaviour,
produced by the day-night variability. IP subjects are practically undistinguishable from
healthy ones. MI, SC and TR densities’s width decrease with a consequent peaks increase.

The Distribution of RRi+1 −RRi

The RR series can not be considered stationary; for this reason it is a com-
mon choice to study the difference signal5

I∆
i = RRi+∆ −RRi,

which is, by construction, nearly stationary.
5 The difference signal is commonly considered; ad example, RMSSD, a classical index

introduced in the previous section, is just the standard deviation of I1.
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Fig. 3.2: For each RR recording in the Noltisalis database, a normalized histogram
of I1

i = RRi+1−RRi has been computed using 20 ms bins from the raw data (no artifacts
nor ectopic beats corrected). Within the same population, all the histograms have been
averaged, producing a mean distribution. In the four panels, the mean normal distribution
is compared with the four pathological ones. The asymmetry in SC is due to the high
number of ectopic beats present in the series (see table 3.3).

As described in section 2.1.3, the probability distribution of I1
i is well

approximated by a Lévy stable function.
To verify if this approximation holds for the series in the Noltisalis

database, we fitted the distribution

fI1(x, α, γ) =
1
π

∫ +∞

0
e−γq

α
cos(qx)dq,

(see also equation (2.1)) to an estimated probability density. We adopted,
as statistic of the distribution, the normalized histogram hI1(x) computed
using a bin width dependent on the ECG sampling frequency6.

6 For populations MR, MI and SCA we used a bin width of 4 ms; for IP series, 6 ms;



60 3. Working on the Noltisalis database

The fitting of the distribution was obtained minimizing the error ξ2(α, γ),
defined in equation (2.3), over the interval I1 ∈ (−200, 200). ξ2 was pre-
ferred, over ε2, to ensure a satisfactory match along the tails of the function.
A non-linear least squares algorithm has been employed; more details on the
numerical technique can be found in section 2.1.3. The fitting, verified by
visual inspection, is generally good (see, for example, figure 2.3).

To assess the statistical significance of the match, two tests are available:
the chi-square test, for binned distribution, and the Kolmogorov-Smirnov
test for continuous data [Mood et al., 1988].

Unfortunately, it is difficult to employ the Kolmogorov-Smirnov test
when the supposed distribution is characterized by parameters depending
on the data set. In fact, no analytical estimates of the distribution func-
tion of the KS statistics are available and Monte Carlo techniques become
necessary [Press et al., 1992, chap. 14.3].

Thus, we applied a chi-square test. The test is not significant for any
series in the database. This is not surprising: the Lévy stable is only a model,
and deviation from the model can be expected with such large data sets (each
sequence contains nearly 100000 RR intervals). Nevertheless, it is positive
that the values of the χ2 statistic are, in average, 20 times smaller than
those obtained when fitting a normal distribution: a Lèvy stable function
represents the statistical properties of the interval differences I1, better than
a normal distribution.

In the Lévy stable distribution, the parameter γ is fundamentally a scale
factor; the dispersion σL = [2γ](1/α) (see appendix A) depends on γ, at
constant α levels. On the other hand, α controls the shape of the distri-
bution. For α = 2 we have a normal distribution, but for 0 < α < 2 the
tails decay slower (heavy tails). In figure 3.3 a comparison is established
among the α parameters in the five populations. Out-layers are present in
at least three populations (NR, IP and SC), but the remaining patients have
1.55 < α < 1.98 with a mean value of approximately 1.83. With a t-test, it
has been verified7 that it is not possible to reject the null hypothesis that
the α values were extracted from distributions with the same mean.

We can conclude that the Lévy stable is a kind of “universal” distribu-
tion of the difference signal I1, and it doesn’t change under pathological
cardiac conditions. Similar results were previously observed also by Peng

for SCB and TRA (fc = 128), 1000/128 ms and, for TRB (fc = 1024), 2 ms.
7 Using a t-test, each pathological population has been compared with the healthy one.

The null hypothesis was that the means (of the α parameters) were undistinguishable. (‡)
a t-test, making the assumption that the standard deviations were different, was used.
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Fig. 3.3: For each sequence in the database a Lévy stable distribution has been fitted
on the normalized histograms of the variable I1. The parameters α, obtained for each
series, are compared in figure. No differences arise between recording coming from normal
and pathological subjects.

et al. [1993], but only by comparing normal and suffering from dilated car-
diomyopathy patients.

By now, we just investigated the statistical characteristics of the differ-
ence variable I1. Moreover, the approximation is very robust, in fact we
also verify that long tails are present in I∆ = RRi+∆ − RRi with ∆ 6= 1.
The ∆ evolutions, of the variables α, γ and ξ2, are displayed in figure 3.4
for a normal subject. For ≈ 16 < ∆ <≈ 1000, parameters values can be
considered constant. Similar patterns were found for nearly all the series in
the database (in 40 over 50 sequences).

3.3.2 Monofractal Approach

We considered as “monofractal”, methods that provide for estimation of the
scaling exponents H, directly or indirectly. The three techniques described in
this section are all meant to quantify the same characteristic, the self-affinity
in the signal, despite through different approaches (a self-affine signal is, by
definition, fractal; see section 2.3.1).

In first place, the scaling exponent H can be computed directly on the

NR vs/ F-test t-test
IP 0.4376 0.8239
MI 0.0171 0.0978

SC 0.0262 ‡0.0576

TR 0.0069 ‡0.0699
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Fig. 3.4: Noltisalis database, subject NR 1. A Lev́y stable distribution has been
fitted onto the data I∆

i = RRi+∆−RRi where ∆ is a fixed time lag. This has been repeated
for several values of the time lag. In figure are plotted the evolution of α (panel a) γ
(panel b), the two parameters characterizing the distribution. In panel c the mean square
fitting error ξ2(α, γ) =

∑
[(log10 hX(Ik))/(1 +

√
|Ik|)− (log10 fX(Ik, α, γ))(1 +

√
|Ik|)]2 is

reported. hI is the normalized histogram computed onto the I series and fI a Levy stable
distribution.

RR series. From (2.11),

〈|RRn+∆ −RRn|〉 = ∆H〈|RRn+1 −RRn|〉;

thus a graph of 〈|RRn+∆ − RRn|〉 versus ∆ on a log-log plot is a straight
line whose slope is the value of H. We’ll use an extension of this methods
to calculate the full multifractal spectrum in the next section; we postpone
there any further discussion.

The slope α, of the power spectrum on a log-log plot in the lower frequen-
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Fig. 3.5: Panel (a): in the frequencies range (0, 0.04] Hzeq, the model logS(f) =
β−α log f was fitted on the power spectrum S(f). The values of α for the five Noltisalis
populations are compared. Panel (b): the model RRi+1 = αSRRi + β is fitted with a
standard linear regression technique onto the variables (RRi+1, RRi). The values of αS

for the five Noltisalis populations are compared.

cies, is also an hallmark of self-affinity. We found that the RR series in the
database display a very good scaling in the frequencies range (0, 0.04] Hzeq.
The model logS(f) = β − α log f has been fitted on the power spectrum
S(f). In figure 3.5 panel (a), the α values obtained for the five Noltisalis
populations are displayed; IR and TR are significantly different (t-test)8

from healthy subjects.

A third approach is based on classical random-walk analysis. Introduced
by Peng et al. [1995], the method is named “detrended fluctuation analysis”
(DFA). The computational technique is complex and it is described in section
2.3.2; it is enough to say that it provides a couple of scaling exponent ν1 and
ν2 which should be robust against the to non-stationarity in the RR data.

The first, ν1 (called “short-term fractal exponent”), is computed on short
scales (∆ < 16); the second, ν2 (“long-term fractal exponent”), expresses the

8 Using a t-test, each pathological population has been compared with the healthy one.
The null hypothesis was that the means (of the α slopes) were undistinguishable. (‡) a
t-test, making the assumption that the standard deviations were different, was used.

NR vs/ F-test t-test
IP 0.0785 0.0398

MI 0.0197 ‡0.0825

SC 4.63e-5 ‡0.1374

TR 8.87e-5 ‡1.22e-4
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scaling on longer scales (100 ≤ ∆ < 4000); it is related to the slope of the
power spectrum by the relation α = 2ν2 − 1.

We computed both exponents on the entire database. Results are re-
ported in tables 3.4 and 3.6.

3.3.3 Multifractal Approach

The computation of the multifractal spectrum of a time series is generally
performed through a box-counting method. In section 2.3.3 we described
how the technique can lead to misleading results. Thus, we preferred to
follow, for the work on the Noltisalis series, the generalized structure
function approach. WTMM, a wavelet based technique, that should decrease
non-stationarity effects, was applied too.

Generalized Structure Functions

Generalized structure functions, described in section 2.3.3,

GSF(∆, q) ≡ 〈|Xn+∆ −Xn|q〉

were computed for each RR series in the database, with indexes q = 1, · · · , 10
and9 ∆ < N/2. GSF for a 38-years old healthy subject are displayed in
figure 3.6 panel (a).

Typically three different regions can be recognized: (i) a steep growth
for the smallest time lags (≈≤ 16); (ii) a good linear scaling region at inter-
mediate scales (∆ ∈ [100; 5000]) and (iii) a third region at large scales where
the stationarity hypothesis breaks down, the behaviour gets unpredictable
and stops being interesting (∆ > 5000).

Two hypotheses may be formulated to explain the existence of the first
region. In first place the quantization error induced on the RR series by the
finite sampling frequency of the recording Holter device can be responsible
for modulation of the GSF for the smallest ∆ values10. Additionally, it is
possible that at scales ∆ < 16, the HRV modulating systems is not strong
enough to prevent the RR series from randomly walking. In fact, the ran-
dom walk RRi+1 = RRi + wi+1 would produce GSF proportional to ∆1/2.

9 The ∆-axis was constructed with: (i) ∆ = {1, 2, · · · , 100} (ii) 90 points in each
subsequent decade, at approximately the same distance in logarithmic scale, up to ∆ =
N/2, where N is the number of points in the series.

10 A similar situation was described by Ivanov et al. [1999]. Unfortunately the mecha-
nism, by itself, is not sufficient to explain the ramp for ∆ <≈ 16; in fact, for the noise
ti = ui+1 − ui, GSF(∆, 1) 6= GSF(∆, q), ∀q 6= 1 but for q ≥ 2 the GSF are expected to be
flat. See also section 1.5 for further details on the superimposed quantization error ti.
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Also the characteristic exponent α of the approximating Lévy distribution
(figure 3.4) decreases for the smaller scales thus suggesting some changes in
the modulating mechanisms.

The linear scaling region is the more important one. We expect a fractal
process to present GSF linearly scaling. In this region, for ∆ in the interval
[100, 5000], the model GSF(∆, q) = A∆qhq was fitted onto each structure
function. Moreover a true multifractal process is characterized by decreasing
scaling exponents for increasing q (hq < hp for q > p). Panel (b) of figure 3.6
illustrates the hq exponents, computed on the GSF of panel (a). They show
a clear decreasing behaviour supporting the hypothesis of multi-fractality in
the RR series.

Every series in the Noltisalis database shows generalized structure
functions similar to the ones presented in figure 3.6; they all have a dis-
tinctive three regions behaviour, with good linear scaling and decreasing
hq.

To further verify the nature of the observed multi-fractality, we prepared,
for each sequence, a set of 10 amplitude-adjusted fourier-transform (AAFT)
surrogate data [Theiler et al., 1992]. As von Hardenberg et al. [2000] points
out, the technique is able to correctly identify the spurious origin of mul-
tifractality in most cases. The hypothesis we would like to nullify is: “the
signal is generated by a linear stochastic process distorted by a nonlinear
filter, expressed by monotonically increasing function”. We employed the it-
erative technique introduced by Schreiber and Schmitz [1996] and described
in section 2.6.2, using j = 5 iterations. The differences among the spectra
of the original and surrogate series were measured by

δ =
∑N

i=1[|Sn| − |s̃
(j)
n |]2∑N

i=1[|Sn|]2
,

where Sn and s̃
(j)
n are, respectively, the Fourier transforms of the original

signal and of the surrogate data, at the jth iteration. We verified that
δ < 1.4 · 10−3 and mean(δ) = 2.6 · 10−5. Besides, the end mismatch was
verified through

γjump =
(RR1 −RRN )2∑N
i=1(RRi − 〈RRi〉)2

,

to be less than 1.4 · 10−4. We truncated up to 1000 points at the end of
each original series (actually we did the truncation before computing any
structure functions to avoid bias) to obtain a length suitable for fast compu-
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Fig. 3.6: Noltisalis database, subject NR1. Structure functions S(∆, q) for the RR
series (upper panel) are computed for q = 1..10 (thick lines); structure functions for 10
surrogates data are displayed as well. The q = 1 case is on the bottom of the figure, q = 10
on the top. The model Sq(∆) = A∆qhq is fitted onto each structure function in the range
∆ ∈ [100, 5000]. The values of hq are displayed in the lower panel; the squares are the
results obtained from the RR series; the dots come from the surrogates data.
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NORM1 X IPER1 X POST1 - SCOM1 - TRAP1 X
NORM2 X IPER2 - POST2 X SCOM2 X TRAP2 -
NORM3 - IPER3 X POST3 X SCOM3 - TRAP3 X
NORM4 X IPER4 X POST4 - SCOM4 X TRAP4 X
NORM5 X IPER5 - POST5 X SCOM5 X TRAP5 -
NORM6 X IPER6 X POST6 X SCOM6 X TRAP6 X
NORM7 - IPER7 X POST7 X SCOM7 - TRAP7 X
NORM8 - IPER8 X POST8 - SCOM8 - TRAP8 -
NORM9 - IPER9 X POST9 X SCOM9 X TRAP9 X
NORM10 X IPER10 X POST10 X SCOM10 - TRAP10 -

Tab. 3.5: Using a statistical test, it is been evaluated the null hypothesis: “the value
of h10, computed on the RR series, and the parameters h10, extracted from the surrogates
data, come from the same normal distribution”. The significance level is p < 0.01; The
check-mark means that the null hypothesis can be safely rejected.

tation through mixed-radix-fft algorithm11. Generalized structure function
were computed on each surrogate sequence, and hq = h∗q values as well. In
figure 3.6, those relative to the subject NR1 are reported. Surrogates GSF
show a common behaviour, with constant h∗q 6= 0 as expected: though hav-
ing the same power spectrum of the original RR series, they lack of phase
correlations and are only colored noise.

By means of a statistical test, we tried to nullify the hypothesis: “hq
and h∗q were extracted from the same distribution, supposed normal” (see
table 3.5). We select q = 10 (if the original series were only colored noise the
choice of q wouldn’t make any difference). In 32 out of the 50 cases, surrogate
data are significantly different (p < 0.01) from the original series. The results
should support the conclusion that RR series are true multifractal processes.

Unfortunately the values of the exponents hq, we found, assume a very
small absolute value (close to zero) and thus non-stationarity effects must
be further investigated.

The mean values of the hq exponents in the five populations are com-
pared in figures 3.7 and 3.8; multifractal spectra of normal subjects display
a much lower value than any other population. To assess the statistical
significance of the differences in the means, we perform a t-test12 among

11 The actual number N∗ < N of points employed was chosen to fulfil the three condi-
tions: (i) 0 ≤ N − N∗ ≤ 1000; (ii) pi ≤ 17, ∀i, where pi are the prime factors compos-
ing N∗; (iii) N∗ minimizes the approximate computational load (of the mixed-radix-fft)
L = N∗ ∑

i pi.
12 Using a t-test, each pathological population has been compared with the healthy one.

The null hypothesis was that the means (of each hq exponent) were undistinguishable. (†)
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Fig. 3.7: The mean values of hq, slopes of the structure functions in a log-log plot,
have been computed among the five different populations; they are compared in the plot.

the hq values of healthy and pathological subjects. For small q values, hq
resulted very effective in distinguish among NR and the other populations.
h1, which matches the H scaling exponent (often refer to as the “Hurst” ex-
ponent, see section 2.3.1) proved to be the only index (among all we tested
in our analysis) able to statistically discriminate among NR and any other
population.

Wavelet-Transform Modulus-Maxima Method

Non-stationarity effects may highly influence the values of the scaling expo-
nents. Recently, a new approach, wavelet-transform modulus-maxima, has
been introduced (see section 2.3.4). In fact, wavelet transform can remove
polynomial trends.

To further limit non-stationarity, we considered only six night hours
(from 24:00 to 6:00) from each RR series: during the night environmen-

a t-test, making the assumption that the standard deviations were equal, was used.

NR vs/ IP MI SC TR

h1
†0.005 0.049 3.7e-4 1.3e-5

h2 0.008 0.074 3.0e-4 6.1e-5
h3 0.011 0.105 4.8e-4 1.8e-4
h4 0.016 0.138 7.0e-4 5.0e-4
h5 0.023 0.176 0.001 0.001
h6 0.040 0.222 0.001 0.002

h7
†0.065 0.267 0.002 0.004

h8
†0.107 0.308 0.004 0.006

h9
†0.153 0.342 0.007 0.008

h10
†0.196 0.374 0.010 0.010
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Fig. 3.8: Mean values of hq as in figure 3.7. Each panel compares the values obtained
from a pathological population with those coming from the normal group. The error bar
displayed are the ranges (minimum–maximum value) of each hq group.

tal stimuli should be highly reduced. The wavelet transform, for a discrete
series RRi, is defined by

Tψ[RRi](b, a) =
1
a

∑
i

ψ

(
i− b

a

)
RRi,

where a > 0 is a scale parameter and b a space position. At fixed scale a,
Tψ[Xi](b, a) is essentially obtained through a convolution, among the analyz-
ing wavelet and the sequence RRi, and can be quickly computed by means
of Fourier transforms.

The analyzing wavelet, ψ, used here was the third derivatives of the
Gaussian function, g(x) = exp(−0.5x2),

ψ(x) = − 2
√

30
15 4
√
π

(t3 − 3t)e−1/2t2
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Fig. 3.9: The mean values of hw
q = [τ(q) + 1]/q, GSF scaling exponents equivalent,

obtained through the WTMM method, have been computed among the five Noltisalis
populations. See also figure 3.7.

which was normalized to have unit 2-norm13, on the finite support x ∈
[−5000, 5000]. We considered scales a = 2 · 1.15i, with i = 0, 1, · · · , 41.

Even at the largest scale considered, the value of ψ, evaluated in 5000/a,
is smaller than 1 · 10−11. The wavelet can be considered zero out of its
support thus enabling the use of a fft algorithm with zero-padding for the
convolution.

The partition function Z(a, q) was computed for q = 1, 2, · · · , 10. At the
scales of interest, the wavelet transform Tψ[RRi](b, a) is a smooth function
in b; local maxima have been localized simply by thresholds on numerical
derivatives of Tψ. Each τ(q) exponent was computed as the slope of the least
square line in a log-log graph of Z(a, q) toward a, with a ∈ (16, 700).

Equivalent values of the GSF scaling exponents, hq = hwq , were computed
through the relation hwq = [τ(q) + 1]/q. Mean hwq values are presented
in figure 3.9. If they are compared to hq exponent, they show a different
behaviour, with a starting growing trend (with the exception of TR subjects).

Mean τ(q) values (and equivalently mean hwq values) of each pathological
population have been compared with those of the healthy subjects. Un-
fortunately, except from TR patients, no pathological population can be
significantly distinguished from the NR ones by means of τ(q) indexes. See
tables 3.6 and 3.6.

13 The 2-norm of the function f(t) is defined as

‖f(t)‖2 =

[∫ ∞

−∞
f2(t)dt

] 1
2

.
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3.3.4 Other Techniques

Recurrence Maps

A two-dimensional recurrence map has been constructed from the RR data
of each subject. The model RRi+∆ = αRRi + β was then fitted with a
standard linear regression technique to the variables (RRi+∆, RRi). ∆ was
chosen to be the first numerical minimum of the autocorrelation function
and it is different from 1. In fact the high correlation of RRi+1 with RRi
would have masked any other information.

The αS parameters, which are the slope of the regression lines computed
for each populations in the Noltisalis database, are displayed in figure 3.5,
panel (b). Significant differences (t-test)14 arise only among normal and
transplanted patients.

Approximate Entropy

Approximate Entropy (ApEn) has been successfully employed in a series of
discrimination tasks on the RR signal (see for example [Fabani and Sassi,
1996] and references therein).

Two values of ApEn have been computed for each series in the Nolti-
salis database: (i) a first index was computed on six night hours (from 0:00
to 6:00, approximatively 22000 consecutive points); (ii) a second was calcu-
lated on each available day hour (approximatively 4400 points each), in the
interval 12:00-18:00; then the values have been averaged. The choice of the
parameters m and r is critical; we followed the suggestions in [Fabani and
Sassi, 1996], setting m = 2 and r = 0.2 · SDNN.

Unfortunately the ApEn values computed on the five populations are
nearly identical and no significance distinctions can be made. The only
exception is between the night-ApEn of normal and transplanted patients.
The last ones have smaller approximate entropy and therefore lower heart
rate variability. Numerical results are reported in tables 3.4 and 3.6.

14 Using a t-test, each pathological population has been compared with the healthy one.
The null hypothesis was that the mean values of the α slopes were undistinguishable. The
double dagger (‡) indicates that it was used a t-test with the assumption that the standard
deviations were different.

NR vs/ F-test t-test

IP 0.0226 ‡0.1540

MI 0.0154 ‡0.2481

SC 0.0026 ‡0.1118

TR 0.0074 ‡0.0188
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3.4 Discussion

At the begin of this chapter we stated two objectives we would have liked
to pursue during the analysis of the Noltisalis database.

Firstly, the attention was on gaining new knowledge on the structure
of the long RR series and thus on the behaviour of the cardiovascular sys-
tem over large time scales. The results we obtained on this point concern,
mainly, the statistical description of the variable I∆ = RRi+∆ − RRi and
the multifractal characteristics of the RR series.

We verified (section 3.3.1) that the normalized histogram of the intervals
difference variable I1

i , is well approximated by a Lévy stable distribution.
The approximation holds as well for differences performed on larger scales
(approximately ∆ < 1000), for the variables I∆

i . The result may appear sur-
prising because non Gaussian Lévy stable distribution (α 6= 2) have infinite
second moments. However this is not in contradiction with any physiologi-
cal or physical knowledge. Statistical distributions with power-law tails are
often present in open complex system in which the action of any part in-
fluences the whole system, as may be the case in the heart rate regulation
system. In the RR series, long tails may be generated by the competition
among the sympathetic and parasympathetic systems, that try to increase
and decrease, respectively, the sinoatrial pace maker frequency [Penna et al.,
1995].

No significative differences arise among the histograms of I∆ of healthy
and diseased subjects. All of them are well fitted by a Lévy stable distri-
bution, with approximatively a value of α ≈ 1.83. The different scaling
pattern we found, for example with the multifractal analysis, must relate to
the ordering and correlation of the I∆ variables.

We also verified (section 3.3.3) that the multifractal spectrum of the
exponents hq (computed through the structure functions method) show a
decreasing course, for increasing q. This behaviour is often the hallmark of
multifractal processes and might be associated with the presence of nonlin-
ear correlations in the signal, and possibly, with the nonlinear nature of the
HRV signal. The chance of spurious multi-fractality, due only to nonlinearly
filtered colored noise, was investigated through surrogate data technique
(amplitude-adjusted fourier transform). 32 over 50 hq spectra were statis-
tically different (p < 0.01) from their surrogate. Both this findings would
support the thesis of multifractal RR series.

Unfortunately, the values we obtained for the hq exponents were small
(approximately < 0.12 for normal subjects). Non-stationarity effects may
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have influenced the RR series much more then expected, thus producing
decreasing trends in the multifractal spectrum.

To further investigate the non-stationarity influence, we also applied the
wavelet-transform modulus-maxima method. The method should eliminate
polynomial trends, up to the third order, from the data. The hwq equivalent
multifractal spectrum shows a distinctive behaviour, with a first growing
tendency before decreasing, eventually. The exponents values are slightly
increased, compared to the structure function method.

The different techniques employed, though supporting the hypothesis of
dynamical nonlinearities in the RR series, do not provide a definitive answer
to the debate on the nonlinear nature of the interbeat series. Besides, the
question is really complex for sure, but we believe that the results presented
in the chapter might be useful to proceed in the analysis of the problem.

The second aim of the work was that of testing statistical indexes, able
to significantly discriminate pathological patients from healthy subjects.

Each multifractal exponent has been compared along the whole database.
For every population, a mean value was computed and then we verified the
null hypothesis that means of normal and diseased patients were undistin-
guishable by means of a t-test. hq proved to be very effective in this dis-
crimination task, in particular with q = 1, 2 and 3.

A large number of classical parameters, for the analysis of the HRV signal
over long time scales, have been considered to set up a proper comparison.
We considered classical time-domain indexes (section 3.3.1), “monofractal”
characteristics (1/fα spectrum; detrended fluctuation analysis; see section
3.3.2) and a regularity statistic (approximate entropy; see section 3.3.4).
They are all reported in tables 3.4 and 3.6. The multifractal exponents hq
were the best performing: h1 ≡ H was the only index, among those consid-
ered, able to distinguish all the four pathologic populations from the normal
one. On the contrary, τ(q) WTMM exponents were quite disappointing.

A possible diagnostic application of the described multifractal indexes,
might be obtained in a multivariate contest, putting them together with
classical time-domain indexes. The use of a pool of statistics is taken into
account in the next chapter. In fact, the computation of discriminating
statistics requires a very large number of RR series.
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NORM vs/ IP MI SC TR

µNN X - - X
SDNN - XX XXX XXX
RMSSD - - XX XXX
SDANN - XX XXX XXX
HTI - XX XX XXX
α Lévy - - - -

α spectrum X - - XXX
ν1 DFA - - - XXX
ν2 DFA XXX - - XXX

h1 ≡ H XX X XXX XXX
h2 XX - XXX XXX
h3 X - XXX XXX
hR - - - XX
τ1 - - - XXX
τ3 - - - XXX
τR - - - XXX

αS recurrence - - - XXX
ApEn night - - - X
ApEn day - - - -

Tab. 3.6: Several parameters computed all along the chapter are compared. For each
of them the ability to discriminate a pathological population from the healthy one is
evaluated by means of a t-test. First of all, a F-test was performed to assess differences
among the variances of the groups (p < 0.05) and then the proper t-test was employed. The
null hypothesis was “the two populations (supposed sampled from a normal distribution)
have the same mean”. In the table the significance levels are reported: XXX (p <
0.001), XX (p < 0.01) and X (p < 0.05). An empty line divides different groups of
parameters: (from the top) (i) statistical & geometrical, (ii) fractal, (iii) multifractal and
(iv) various. Only the scaling parameter H is able to discriminate all the four pathologic
populations. “µNN” is the mean RR interval; “SDNN”, “RMSSD”, “SDANN” and “HTI”
are the four classical time-domain measures, selected by Task Force [1996]; “α Lévy” is
the characteristic exponent for the Lévy distribution that best fits the I1 series; “α” is the
Power spectrum slope (log-log graph) in the lower frequencies; “ν1” & “ν2” are the DFA
fractal exponents; “hq” are the qth scaling exponents obtained through GSF approach;
“hR” = maxq[hq]−minq[hq]; “τq” are the exponents τ(q) obtained via WTMM method;
“τR” = maxq[τ(q)] −minq[τ(q)]; “αS” is the slope of the least-square line fitted to the
spectrogram of the variable (RRi+∆, RRi), where ∆ is the first numerical minimum of the
autocorrelation function of the interbeat sequence; “ApEn night” and “ApEn day” are the
approximate entropies (m = 2, r = 0.2·SDNN) computed in six night hours (from 24.00
to 6.00) and six day hours (from 12.00 to 18.00) of RR series, respectively.



4. MULTIVARIATE FETAL HRV ANALYSIS

Abstract

We considered 362 separate cardiotocographic exams (200 obtained from fetuses
regarded as “normal”, at delivery, and 162 from “pathological” ones); the recordings
were performed at a gestational age in the interval 28–42 weeks. Data belong to
a database of 252 subjects and the quality, of each recording, was preventively
verified.

After artifacts and zero data correction, from each exam, a set of 16 parameters
(x) was extracted. Mantel’s approach was used to calculate time domain variables,
such as the baseline, accelerations, and decelerations; Power spectrum components,
in LF (activity of the sympathetic nervous system), MF (fetal movements) and HF
(fetal breathing) bands, were obtained through parametric analysis with autore-
gressive models from the fetal heart rate signals (FHR). Also approximate entropy,
a regularity statistics, was considered; in fact, it is suggested that non-linear mech-
anism may influence the FHR generation process.

We investigated the possibility to automatically allocate, by means of a classifi-
cation technique, a fetus to a fetal suffering condition (one out of a fixed number of
types) according to the value of x; the approach might be a first step towards the
development of a diagnosis support device. Several supervised classification systems
have been applied to the parameter set: linear, quadratic and logistic discriminant
analysis, k-nearest neighbour classifiers and multi-layers feed-forward neural net-
works.

Only feed forward neural networks were able to distinguish normal and patho-
logical fetuses: the method correctly classified 80% of the exams. The applied
technique, though needing further work and tuning, is promising. The multivariate
approach proved to be very effective.
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4.1 Introduction

The knowledge of fetus health conditions during pregnancy is of great im-
portance to prevent dangerous events. In fact, serious malformations, irre-
versible neurological damages and the death of the fetus can be avoided by
timely diagnosing some growth and nutrition alterations that induce fetal
suffering conditions. Nevertheless, the early identification of many among
these disease states is very difficult to obtain. In this case the knowledge of
data on the fetal health conditions can strongly help the diagnostic process.
Moreover, the fragile structure of the fetus requires the use of non-invasive
methods to extract the necessary data. Cardiotocography (CTG) is the
clinical, traditional, noninvasive approach to monitor antepartum fetal con-
ditions but rarely it detects emergencies of fetal pathologies. There are still
many problems connected with interindividual and intraindividual variabil-
ity concerning the interpretation of the curves. A number of systems to
extract parameters starting from the CTG signal were developed, highly re-
ducing intraindividual variability. The Fetal Heart Rate signal (FHR), upon
which CTG is based, provides reliable indications on fetal status. In fact,
several conditions such as hypoxia, acidemia and drug induction produce no-
ticeable variations of FHR. Recent results on FHR signal demonstrated that
both linear and non-linear mechanism are involved in the signal generation
suggesting the usefulness of a multivariate approach [Task Force, 1996].

In this chapter we propose to classify FHR signals through a set of in-
dexes including (i) time domain, (ii) frequency domain and (iii) regularity
(approximate entropy) parameters. This set is used as the input of an au-
tomatic system, whose goal is to detect the risk for the fetus to enter a
pathological state.

In the work we focused on four potential pathological states: (i) nutrition
alterations caused by maternal hypertension (H), (ii) intra-uterine growth
retardation (IUGR), (iii) nutrition alterations caused by maternal diabetes
(DG), and (iv) fetal macrosomia (MACRO). States (ii) and (iv) are defined
at delivery, comparing the actual weight of the newborn baby (W ) with
standard weights tables (obtained by averaging over huge populations of
infants); state (ii) is characterized by p(W ) < 10% and (iv) by p(W ) >
90%, where p(W ) is the probability of a given weight W . On the contrary
states (i) and (iii) are potentially dangerous situations, in which a special
attention is necessary during pregnancy, as they can lead at delivery to states
(ii) and (iv), respectively. Both maternal hypertension and diabetes are
pathologies induced in the mother by pregnancy; the generating mechanisms
are widely discussed and, yet, no general explanation has been proposed.
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Usually specific tests, other than cardiotocography, are available to detect
the two maternal pathological states; nevertheless, being able to localize
these problems with a widely employed technique such as CTG would be of
immediate impact in reducing the time of the diagnosis process.

4.2 A Short Fetal Monitoring History

Until1 the second half of the 20th century, assessment of the fetal condition
depended on very limited means: the growth of the uterus and its contents,
the movements of the fetus perceived by the mother and the listening of the
fetal heart beat with a mono or binaural stethoscope.

Obstetric auscultation was mentioned as early as the eighteenth century;
in 1821, a Parisian doctor, Jean-Alexandra La Jumeau, was the first per-
son to demonstrate fetal heart tone auscultation in public. Eventually, fetal
heart tone auscultation became a standard for fetal surveillance until late
1960’s. In 1961, the 12th edition of Williams’ Obstetrics stated, “The most
characteristic sign (of fetal distress) is afforded by change in the fetal pulse
rate. [...] For practical purpose it is well to assume that a pulse rate of 100
or less for any great length of time is incompatible with life of fetus, and
under such circumstances delivery is indicated, provided it can be accom-
plished without risk to the mother”. The experience of many obstetricians
indicated that the statement was not always true. In 1968, Benson pub-
lished a collaborative study on the value of fetal heart tone auscultation,
and concluded that there was no reliable simple auscultatory indicator of
fetal disease in term of fetal heart rate except in the extreme degree.

Sudden absence of fetal movements in the second half of pregnancy was a
serious diagnostic problem. Usually one had to wait for some weeks in order
to observe if the uterus would grow before the decision could be reached to
induce labour. The sign of Spalding at X-ray examination, showing overlap-
ping of the fetal skull bones like roof tiles as a result of advanced maceration
of the fetal tissues, was one of the few helpful objective diagnostic signs of
fetal demise.

This recurrent dilemma, whether or not the fetus had died in utero,
formed the major impulse for the development of cardiotocography. Since
the recording of fetal electrocardiograms through abdominal wall electrodes
was reported by Cremer in 1906, there have been attempts to apply this
technique in fetal surveillance, but the results have been limited. Initially

1 The section has been adapted from [van Geijn, 1998] and [Yeh, 1998]
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fetal abdominal electrocardiography and phonocardiotocography were pur-
sued, but failed, primarily due to technical problems.

It was only at the end of the 60’s, when the fetal heartbeat could be
rather easily detected by means of ultrasound (the Doppler-shift) or through
the application of direct electrocardiography, that cardiotocography became
popular as the method to monitor the condition of the fetus. This new
modality provides not only continuous heart rate information, but also fetal
heart rate changes in response to uterine contractions. Currently the ma-
jority of obstetric decisions to assist delivery of the baby by artificial means
(caesarean section, forceps or vacuum extraction) for reasons of suspected
fetal distress, relies on information gathered through the application of car-
diotocography.

It is the obstetrician’s reassurance that if the fetal heart rate (FHR)
pattern is normal then there is the nearly 100% certainty that the fetus is
in a good condition, which has made cardiotocography so attractive and has
induced its widespread use.

4.3 Fetal Heart Rate Signal

4.3.1 Background

There2 are three signal sources available when monitoring the FHR: (i) elec-
trical impulses which are obtained by internal monitoring via Direct ECG
(DECG) or externally via Abdominal ECG (AECG); (ii) movement of the
heart which is externally detected via the ultrasound (US)-Doppler method;
(iii) sound, obtained by phonographic methods (Phonocardiography).

FHR monitoring via DECG is the most accurate method for obtaining
beat-to-beat FHR information, as the beat-to-beat measurements are calcu-
lated from the electrical signals of the fetal heart. Therefore, the closer FHR
recorded by ultrasound gets to the DECG measurements, the more accurate
the measurement is.

The Ultrasound-Doppler Method

In the earlier 1970’s, the ultrasound continuous wave (CW) Doppler intro-
duced a new method in FHR monitoring. A few years later, due to an
improved signal-to-noise ratio and the possibility to detect signals from a
defined depth, the ultrasound pulsed-Doppler method was introduced.

2 A part of this section was adapted from: Hewlett Packard, B oblingen, Application
Note 5964-1562E, 1995
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Fig. 4.1: Envelope Doppler-signal (upper trace), derived from the demodulated
Doppler-signal (second trace and lower trace) four possible heart periods T1–T4 , de-
rived by peak detection. Symbolized by the two circles the heart rate interval is calculated
by autocorrelation of the waveform complexes. (Hewlett Packard, Böblingen, Application
Note 5964–1562E, 1995).

Using this method, a pulse typically consisting of about 100 cycles of 1
MHz is transmitted towards the fetal heart. Then the ultrasound crystal
is electrically switched to the receiving mode. The reflected pulse, slightly
shifted in frequency (Doppler shift) by contractions of the fetal heart, will be
compared with the transmitted pulse (demodulation). Figure 4.1 shows the
demodulated signal (second trace from top) and the corresponding envelope
signal (first and third trace). In earlier fetal monitors, beat-to-beat fetal
heart rate was calculated using peak detection (time T from highest peak
in the first heart beat to highest peak in second heart beat). Since these
two heart beats in figure have similar double peaks, up to four different time
intervals T1 to T4 and, consequently, four different FHR values are possible.
However peak-to-peak detection lacked accuracy due to “jitter” (artificial
variability) affecting the beat-to-beat FHR.

With the introduction of the autocorrelation method, successive heart
signals are compared and tested for their similarity.
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Thus, not one point in time within a heart action, but the complete
waveform complex, symbolized by a circle in figure 4.1, is compared to the
following one.

Problems of Autocorrelation

Even slight movements of the fetus, of the mother, and other sources will
change the detected Doppler signal. To overcome these problems, an average
buffer with several weighted heart beats is built up and the most probable
heart rate will be generated. The actual FHR signal produced by the CTG
device (which is printed or recorded) is obtained by sampling the buffer at a
constant rate (usually 2Hz), independently from the value of the buffer itself.
This means that a FHR value can be sampled twice and the resulting series
displays high persistence. Thus the advantage of easily picking up fetal heart
activity must be balanced with the disadvantage of a limited beat-to-beat
accuracy.

4.3.2 Signal Recording & Preprocessing

Due to historical reasons, fetal CTG monitors, commercially available, dis-
play only the fetal heart rate expressed in number of beats per minute (bpm)
and do not offer the series of interbeat intervals, usually employed in HRV
analysis (see section 1.5).

If compared to standard Holter recordings, the buffering procedure high-
ly reduces the precision of the RR sequence as generated by inverting the
FHR signal (60000/FHR ms). Besides, it is possible that the CTG device
erroneously locks on the slower maternal fetal beat, even the autocorrelation
method, described previously, is employed. This leads to an abrupt decrease
into the FHR signal and it influences the evaluation of variability indexes.
Therefor, a proper artifact detection technique has to be employed. The one
we developed relays on the work of van Geijn et al. [1980]; the main concept
is that an acceleration of heart rate develops more slowly than a deceleration
does, thus the limit for the acceptance of the point S(i+1) differs according
to whether S(i+ 1) is smaller or greater then S(i).

In details, three requirements are set up: (i) acceptance of FHR values
which satisfy the criterium:

200S(i)
400− S(i)

< S(i+ 1) <
200S(i)

114 + 0.43S(i)
; (4.1)

the whole series is processed many times and, at each run, the number
of points rejected is counted; the process stops when in a entire run no
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Fig. 4.2: Grey region identifies the FHR points, corresponding to equation (4.1). They
are considered invalid and marked as artifacts for successive correction. Accelerations of
heart rate develop more slowly than decelerations do, thus the region below the S(i) =
S(i+ 1) line is bigger than the above one.

further points were discarded3; (ii) a minimum of three intervals that qualify
to (4.1) must be present in succession (S(i − 1), S(i) and S(i + 1) for final
acceptance of S(i+1)); (iii) short intervals of valid points, contained between
invalid sequences, are rejected if their length is equal or smaller than 20
points. Figure 4.2 presents the region where FHR values are not considered
acceptable according to rule (ii).

Ranges for acceptance of S(i+ 1) are comparable with those applied in
commercial monitors (= S(i)± 20 bpm). Nevertheless the applied criterium
is definitely more selective and precise.

4.3.3 Baseline Detection

Interpretation of the heart rate pattern is usually performed by the physician
who analyzes the deviations of the signal from an imaginary line, the base-
line. He hypothetically constructs it as a running average of the heart rate.
Accelerations and decelerations are defined as deviations from the baseline,
and more than one quantitative definition is available.

3 Already rejected points are substituted by means of linear interpolation. If a point
fails to comply to (4.1) and it is already marked as invalid, a still valid point is sought
forward and marked as invalid (this is particularly useful with artifact series at unusually
low values of FHR).
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New Old

Probability before peak P 0.167 1/8

Minimum length of accelerations 6 points (15s) 5 points (12.5s)
Minimum length of decelerations 12 points (30s) 5 points (12.5s)

Tab. 4.1: Changes we made at the Mantel et al. [1990a,b] algorithms. A reference
P value is computed at the beginning of the baseline computation procedure, scanning a
histogram of the RR values from high to low values. The peak is located after at least 0.167
(it was 1/8) of the whole area of the histogram is scanned. This ensures, still, a baseline
fit near the lower level of the basal heart rate but avoid problems with subject suffering
from fetal tachycardia (or showing episodes of tachycardia, with basal heart rate highly
over the average). Also, we changed the minimum length a deviation from the baseline
has to display to be considered either an acceleration or a deceleration. This avoid short
episodes to be regarded as meaningful deviations.

Therefore, the analysis of the same tracing to different physicians can
leads to different baseline subjective determinations, and consequently to
different locations for the deviations. To make things even more complex,
during accelerations and decelerations the baseline represents a theoretical
frequency which might have occurred if the accelerations didn’t take place;
this statement is by itself difficult to translate in practical rules.

In the construction of an automated system for the evaluation of the CTG
recordings, a reproducible determination of the baseline is a fundamental
starting point. Several attempts in this direction have been made starting
from the work of Dawes et al. [1982]; the approach we followed was that
suggested by Mantel et al. [1990a], but we tuned the parameters of the
algorithm, to make the outcome fully compliant with the opinions of a team
of physicians expert on CTG analysis.

The algorithm is very complex, and a full description can be found in
the cited reference. We followed completely the indications therein; the
changes in the parameters values we introduced are reported in table 4.1.
As a preparation step to baseline computation, after acquisition and pre-
processing, FHR sequences were averaged over 2.5s periods (5 points) and
decimated; in the following we’ll call this signal S24(i) as in every minute,
there are 24 points.

The changes we made to the original Mantel algorithm are meant to fix
situations where, during periods of high basal fetal heart rate, the baseline
was underestimated.
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Fig. 4.3: A 25-minutes cardiotocographic tracing is illustrated; the signals have been
recorded at the 33rd week and the baby, at delivery, has been classified as “normal”.
Panel a shows fetal heart rate in bpm; the sketched line is the baseline. Arrows mark
accelerations, while decelerations are not present. Panel b presents the toco signal recorded
on the mother: the baseline is presented as a sketched line. Arrows marks contractions.

Accelerations & Decelerations

Accelerations and decelerations are deviations of the fetal heart rate from
the baseline lasting a sufficient amount of time (accelerations are positive
deviations, decelerations negative). They are correlated with the normal
activities of the fetus, who “trains”, moves and exercises to breath. De-
celerations are unfrequent and usually correlated with uterine contraction.
Since the arteries supplying the placenta follow a winding course through
the complex uterine musculature, each contraction restricts the supply of
blood, reducing the oxygen support , thus leading to a decrease of the heart
frequency. Moreover, it can not be excluded that the autonomic control of
the fetus itself, through the action of the baroceptor system, contributes to
the observed decrease of the FHR.

Unfortunately, different quantifications of the words “deviations” and
“sufficient” led each medical school to develop their own method to evaluate,
by means of a ruler, these quantities on the monitoring strip. We tried to
develop a procedure fully consistent with the definition of Mantel et al.
[1990b], but also holding the suggestions present in Arduini et al. [1993]. At
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this purpose, the minimal length necessary to qualify a deviation to be an
acceleration or a deceleration has been increase as reported in table 4.1.

Also, we divided the accelerations in two populations according to their
maximum deviation (LMAX) over the baseline. Arduini et al. [1993] sug-
gests that the two groups might have different diagnostic importance. Large
accelerations have LMAX > 15 bpm, while the small ones, 10 < LMAX ≤ 15
bpm.

In figure 4.3(a), a fetal heart rate signal, recorded by means of a car-
diotocographical device is illustrated. The same figure displays the baseline
and a few accelerations, computed with the discussed techniques.

4.3.4 Classical Statistical Characterization

With the recognition of the significance of fetal heart rate variability, starting
from the work of De Haan et al. [1971], several attempts were made to
develop statistical indexes that quantify variabilities. Although there have
been many methods proposed by various researchers, we selected a few of
them, which we retained the most widely accepted. They became, over the
years, integral part in fetal evaluation. They could have been introduced
in chapter 2, but as long as they concern only fetal heart rate variability
analysis, we preferred to postpone here their description. Classical FHR
statistics are truly time-domain measures.

In the following, interbeat sequences (loosely speaking called RR se-
ries) will be used in place of heart rates; for the reasons already stated,
in cardiotocography, they are computed as: T (i) = 60000/S(i) ms and
T24(i) = 60000/S24(i) ms.

Long Term Irregularity

LTI, Long Term Irregularity, was the first index ever introduced; it was
proposed by De Haan et al. [1971]. It is usually computed on a short segment
of RR signal (initially 512 points for computational reasons).

Given three minutes of RR signal, T24(i), in ms (i ∈ [1; 72]), we defined
LTI as the interquartile range [1/4; 3/4] of the distribution of the modula
m24(j), where

m24(j) =
√
T 2

24(j + 1) + T 2
24(j). (4.2)

We excluded from the computation large accelerations and decelerations,
as suggested by Arduini et al. [1993], to avoid deviations from providing
spurious measures of variability. The three minutes, after the removal of the
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undesired parts, must contain, at least, a continuous segment of 30 seconds
(12 points). Even for the computation of Delta, STV and II we used the
same approach. The only exception is Delta, in this case we did not require
the 30 seconds to be consecutive.

Delta

Delta is the rawest measure of variability, being define as the range of the
signal in a given time interval. “Normality” of a FHR tracing, in clinical
routine, is often assessed by means of the values of Delta.

Given one minute of RR signal, T24(i), in ms (i ∈ [1; 24]), we defined
Delta as

Delta = max
i

[T24(i)]−min
i

[T24(i)]. (4.3)

Rarely, Delta is expressed in bpm; being y = 60000/x a monotonically
decreasing function, DeltaBPM can be obtained as

DeltaBPM =
60000 Delta

maxi[T24(i)]mini[T24(i)]
.

Even in this case, exclusion of large accelerations and decelerations ap-
plies, as already discussed in the LTI case.

Short Term Variability

Short Term Variability, STV, quantifies FHR variability over a very short
time scale, usually on a beat to beat basis. We refer to the definitions
provided by Dalton et al. [1977] (even if we used a scale factor of 12) and by
Arduini et al. [1993].

By considering one minute of RR signal, T24(i), in ms (i ∈ [1; 24]), we
defined STV as

STV = mean[|T24(i+ 1)− T24(i)|] =
∑23

i=1 |T24(i+ 1)− T24(i)|
23

. (4.4)

We must underline that the definition (4.4) is also similar to that intro-
duced by Organ et al. [1978] (see also [Parer et al., 1985]), except, in that
case STV was computed on 30 seconds of heart rate signal in bpm.

Even in this case, exclusion of large accelerations and decelerations ap-
plies, as already discussed in the LTI case.
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Interval Index

Historically, Interval Index, II, was introduced just after LTI and it is cer-
tainly one of the most used variability index. It was proposed by Yeh et al.
[1973] as a long term variability statistic (see also [Parer et al., 1985]); the
original definition was,

IIY =
std[T24(i)]

mean[T24(i)]
,

where T24(i) corresponds to 30 seconds of RR signal.
Arduini et al. [1993] obtained a better short term parameter by changing

the definition to

II =
std[|T24(i+ 1)− T24(i)|]

mean[|T24(i+ 1)− T24(i)|]
=

std[|T24(i+ 1)− T24(i)|]
STV

, (4.5)

where T24(i) (i ∈ [1; 24]) is a minute of RR signal. We followed this second
approach.

Even in this case, exclusion of large accelerations and decelerations ap-
plies, as already discussed in the LTI case.

Remarks

Classical statistical FHR indexes can be divided into two main families: (i)
long term and (ii) short term statistics. The first ones measure the variability
over the whole segment of the considered signal. Both LTI and Delta (and
IIY as well) are among these. The second one detect local properties: longer
time series are used only to gain better statistical estimations by means of
averages; STV and II pertain to the latter group.

4.4 Toco Signal

During a CTG recording session, while the fetal heart rate is detected by
means of an ultrasound-Doppler probe, the intrauterine pressure is also mea-
sured through a pressure transducer, located on the mother’s abdomen.

The signal, acquired at a sapling frequency of usually 2Hz (the same of
the cardiographic device), estimates the variations of intrauterine pressure
(conventionally in mmHg) with respect to a certain initial value, manually
configured at the beginning of the recording session (conventionally indicated
with the value of 20mmHg). Therefore, it is only a relative measure.

The pressure time-series is also called “toco” signal; in the following we
will indicate it with Q(i).
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4.4.1 Reference Line Detection

Usually, no baseline is computed for the toco signal; at least nothing equiva-
lent to what described for the FHR series. In fact, the toco signal is more pre-
dictable and, often a straight line, drawn at the reference value (20mmHg),
is used to detect deviations during the visual inspection of the monitoring
strip.

On the other hand, if the mother moves during the recording, or the belt
(to which the transducer is connected) is not properly fasten or is loosen by
movements, the reference value may not be properly calibrated anymore. In
these cases, sudden steps appear in the pressure signal, and the reference
value moves, usually to a different level. While developing a fully automatic
procedure, these variations in the reference value have to be taken into ac-
count, in such a way to not be confused with uterine contractions. Thus, an
original algorithm was developed to construct a toco-baseline.

The technique is composed of two different phases.

• Given a certain point, i, a distribution, of the values of the toco signal
Q(j) in a 8-minutes window centered on i (j ∈ [i − 480, i + 480]) was
constructed by means of an histogram. The value of the 0.5 quantile,
ξ0.5(i), was then computed; it constitutes a first rough value for the
baseline in i.

The procedure was repeated for each point in the toco series (deal-
ing with the distributions computed at the extreme of the series, we
considered null the signal for j < 1 and j > N , where N is the toco-
length).

• The quantile series ξ0.5(i) was then filtered through the low-pass FIR
filter

h(j) ≡ h(Nf − j + 1) =
1

(α+ 1)2
,

where α = (Nf − 1)/2 and Nf is the order of the filter. The filter
has exact linear phase; we used Nf = 15, which correspond to a time
window of 7.5s (band −3dB, approximatively f = 0.08Hz). The filter
was applied twice, the first time forward and the second backward.

A toco signal and the baseline computed with this procedure is reported
in figure 4.3(b).
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Contraction

As long as the gestational process evolves, the uterine musculature undergoes
occasional contractions; the number of contractions gradually increases as
the delivery date approaches. Uterine contractions are physiological and
prepare the musculature for delivery labour.

A contraction is revealed, in the pressure signal, by a triangular-like pat-
tern. To automatically detect contractions, we sought for positive deviations
from the baseline, that:

• have a minimum distance from the baseline of 7.5 mmHg, for at least
one minute (120 points);

• have a minimum distance from the baseline of 10 mmHg, for at least
30 seconds (60 points).

The algorithm, we developed, was obtained by adapting the approach to lo-
calization of FHR accelerations described in Mantel et al. [1990b]. In partic-
ular only phase one was considered relevant and two subsequent contractions
were collected together if the gap among them was shorter then 25 points
(12.5s; the signal must be over the baseline for the duration of the gap).
The toco signal was preliminary filtered through a low-pass FIR filter4 to
eliminate the high frequency jitter. Each contraction, conventionally, starts
when the distance of the toco signal from the baseline exceeds 5mmHg. Sim-
ilarly, it ends when the distance goes below 5mmHg. In figure 4.3(b), two
contractions, located with this technique, are illustrated.

4.5 Experimental Protocol

4.5.1 Data collection

The data were collected by means of a joint research effort5, including uni-
versity departments and a private company, in Italy. The project aim is to
develop new tools, diagnostic or clinic, in the field of cardiotocography.

In a temporal interval of two years, 815 CTG recordings were collected,
under the supervision of prof. Domenico Arduini. The data were acquired

4 The filter is defined by: h1 ≡ h5 = −3/35, h2 ≡ h4 = 12/35 and h3 = 17/35; it has
exact linear phase, with a −3dB band ending at f ≈ 0.48Hz.

5 Dipartimento di Informatica (Università di Pavia), Dipartimento di Bioingegneria
(Politecnico di Milano), Istituto di Ginecologia ed Ostetricia (Università di Roma “Tor
Vergata”), Agilent Technologies Italia.
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with four identical devices (HP M135XA), located in various university clin-
ics in Roma. For 549 of them, it has been possible6 to obtain the physician’s
diagnosis about the health conditions of the baby at delivery (weight, type
of delivery, Apgar score, . . . .).

Each recording lasts, at least, 30 minutes and it is composed of both the
cardiographic series and the toco trace. For the FHR sequence, it is also
available (and it has been collected) a quality index signal, corresponding
to the output of the autocorrelation procedure, previously described. It is
quantified in three different levels (“green” or 32, optimal quality – high
correlation; “yellow” or 64, acceptable quality; “red” or 128, insufficient
quality – signal unavailable). Signals were recorded at the highest available
sampling frequency (2Hz).

After removal of possible red-quality points at the beginning of the se-
quence, each FHR series has been subdivided into 3-minutes segments (360
points). We considered a segment to be of “sufficient” quality (SQ) if it
contains at most 17 red-quality points (< 5% of the length of the segment).
Out of the 549 recordings, only those with, at least, 5 segments of sufficient
quality were further considered, discarding the others (22 recording were
discarded, 4% of the available ones).

We chose this quality-assessment procedure to ensure that:

i. sequences with long red-quality segments, but with still a reasonable
quantity of good data wouldn’t be discarded (it would be the case setting
a maximum rate of red-quality points over the whole signal);

ii. the quality of the data further employed in parameters estimation was
sufficient;

iii. the technique could be easily employed in a CTG device, actually used
in monitoring practice (more strict requirements would have led to a
high number of rejection, with a subsequent increase of the monitoring
time).

We further restricted the number of recording employed, by activating the
three following criteria:

1. Only 4 of the possible pathological states, of the mother-fetus system,
were taken into account. The other ones were considered numerically

6 Often, the delivery doesn’t occur in the same hospital where the fetal monitoring was
performed; in all these cases, it has been very difficult to have all the information required
by the experimental protocol.
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too small and statistically intractable. We focused on: (i) alterations
caused by maternal hypertension (H), (ii) intra-uterine growth retar-
dation (IUGR), (iii) alterations caused by maternal diabetes (DG),
and (iv) fetal macrosomia (MACRO). Normal fetus (N) as well were
included. Each fetus was allocated to one of these categories according
to the statements of the obstetrician.

2. Only patients with a gestational age ranging between 28 and 42 weeks
were considered. Older and younger ages were considered not sta-
tistically relevant (with a very small numerical incidence on clinical
practice).

3. Only one recording per week, per patient, was taken into account. In
fact in few cases the monitor session was performed several times in
the same week leading to a possible polarization of the whole work on
that subjects. When more then one signal was available, the one with
the larger number of sufficient-quality segments was selected.

Table 4.2 reports a subdivision, of the considered recordings, with patho-
logical state and gestational week. The total number of signals further con-
sidered into the analysis is 362 belonging to 252 different patients7.

7 The distribution of the 252 patients, with respect to the pathological state, is:

ID Pathol.State Patients# Recordings# A priori prob.(%)
1 N 154 200 49.1
2 H 32 53 12.7
3 IUGR 23 40 10.2
4 DG 19 38 7.4
5 MACRO 24 31 9.7

Total 252 362 89.0

“A priori prob.” is the a priori probability for each pathological state computed on the
whole set of diagnoses, without quality considerations. It, loosely speaking, represents the
population of patients that access to the screening test in the considered hospitals.
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4.5.2 Parameters Computation

On each of the selected recordings, we computed some parameters. The aim
of the research is to investigate if a group of indexes, x, is able to characterize
the signal, that is, if it is possible to automatically allocate, by means of a
classification technique, a fetus to a pathological state (one out of a fixed
number of types) according to the value of x.

The classification approach is described in the next paragraphs, here we
focus on the parameters xi composing x.

For each recording: (i) some indexes were computed on the whole signal,
(ii) others on each segment of sufficient-quality and, finally, (iii) a few others
on each minute composing each sufficient-quality segment. This is related
to the typical definition of each index (e.g., accelerations are counted over
the whole signal while LTI is computed on one-minute basis).

a. We started by computing the baseline for both FHR and toco signals.
Then, we counted the number of: (1) large accelerations per hour, (2)
small accelerations per hour, (3) decelerations per hour and (4) uter-
ine contractions per hour. The numerical details were illustrated in sec-
tions 4.3.3 and 4.4.1.

b. On each sufficient-quality (SQ) RR segment (the decimated series T24,
sampled at 0.4Hz, was employed) we considered: (5) the mean T24(i)
value (ms), (6) the standard deviation of T24(i) (ms2) and (7) the Long
Term Variability (LTI, measured in ms; described in section 4.3.4) value.

Also spectrum analysis (see section 2.2) was performed on each SQ-
segment (over a 3-minutes interval, the FHR signal should be sufficiently
stationary). After artifacts detection, the original FHR series, S(i) was
processed for correction; missing or discarded points were substituted by
means of linear interpolation over nearby points. Spectrum analysis was
carried out on the RR sequences obtained by T (i) = 60000/S(i). A para-
metric approach was followed [Kay and Marple, 1981; Zetterberg, 1969;
Baselli et al., 1997]: as a first step an autoregressive model (AR) fitted
the data8; then the frequency axis was divided into the 4 adjacent bands9:

8 The order was selected in the fixed interval [8; 20]; the order had to minimize the Akaike
[1974] information criterium and also fulfill the Anderson whiteness test (see note (10) in
chapter 2).

9 VLF=Very Low Frequency, LF=Low Frequency, MF=Middle Frequency and HF=High
Frequency.
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Start End
VLF 0 0.03
LF 0.03 0.15
MF 0.15 0.5
HF 0.5 fNyquist = 0.5/∆,

where the frequencies are expressed in Hz-equivalent units and ∆ is the
mean T24(i) value, in seconds. Ranges are different from those suggested
by the Task Force [1996] and reported in table 2.1. In fact, the basal value
of FHR is usually twice as big as the mean frequency of an healthy adult.
Therefore, the ranges must be enlarged to reach higher frequencies where,
reasonably, physiological mechanisms play a role. Besides, a fetus typi-
cally moves and the movements contribute in the dynamics of the heart
system by adding a frequency component in the range, christened “middle
frequency”. Summarizing, we considered four bands: VLF, LF (collect-
ing neural sympathetic activity), MF (depending on fetal movements and
maternal breathing) and HF (marking the presence of fetal breathing).
Finally, we computed the power in each spectral band, by direct integra-
tion of the power spectral density of the fitted AR-model (see note (13)
in chapter 2). The obtained parameters were: (8) LF-power (ms2), (9)
MF-power (ms2), (10) HF-power (ms2) and (11) the ratio LF/(MF+HF)
(the autonomic “sympatho-vagal balance” described in section 2.2.3)

Also, on each T (i) SQ-segment, approximate entropy (ApEn), a regularity
statistics [Pincus, 1991, 1995], was computed. Several previous works,
on HRV of fetus or new-born children [Fabani and Sassi, 1996; Pincus
and Viscarello, 1992], verified that, among the nonlinear statistics, ApEn
could reliably discriminate healthy and pathological subjects employing
shorter time series. The multifractal approach, described in chapter 3,
though very powerful, requires large numbers of points to be effective.
Unfortunately, through cardiotocography, it is practically impossible to
obtain a sufficiently long time series10 and ApEn is preferable. A few
notes on approximate entropy can be found in section 2.5; we followed
the indications in Fabani and Sassi [1996], setting m = 1 e r = 0.2, thus
the computed parameter was: (12) ApEn(1, 0.2). The algorithm, actually
employed, is described in appendix C.

10 Cardiotocography technology produces poor quality signals with many signal losses;
this makes difficult to collect long time series. Secondary, the recording time must be
limited not to maintain the mother in a still position too long; this could induce in the
signal anomalous patterns.
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c. On each minute of each sufficient-quality segment we computed: (13)
Delta (ms), (14) short term variability (STV, measure in ms) and (15)
interval index (II). Numerical details are described in section 4.3.4).

For each parameter, described at point (b), several numerical values are
available, one for each SQ-segment. Equivalently, parameters at point (c)
have an estimate for each minute. To ensure a better statistical reliabil-
ity, we suggest to average multiple values, thus decreasing intraindividual
variability.

Summary

Among several cardiotocographical recordings, 362 exams have been selected
to be of sufficient quality, with a gestational age from 28 to 42 weeks. They
were associated, by expert physicians, to 5 pathological states.

On every recording, several parameters have been computed; when pos-
sible, they have been calculated more then once (on each sufficient quality
3-minutes-segment and on each minute) and subsequently averaged. The
indexes were:

computed on the
whole signal


(1) large accelerations per hour
(2) small accelerations per hour
(3) decelerations per hour
(4) uterine contractions per hour

computed on each
3-minutes SQ-segments



(5) T24(i) mean (ms)
(6) T24(i) standard deviation (ms2)
(7) LTI (ms)
(8) LF-power (ms2)
(9) MF-power (ms2)
(10) HF-power (ms2)
(11) LF/(MF+HF)
(12) ApEn(1, 0.2)

computed on each
minute in each

3-minutes SQ-segments


(13) Delta (ms)
(14) STV (ms)
(15) II

The 15 parameters11 (when applicable their average) plus the (16) ges-
11 The 15 parameters might be grouped also as: morphological (large and small acceler-
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Fig. 4.4: Structure of the 7-fold cross-validation. The original data set X is divided into
7 subsets, here labelled ranging from A to G. At first (column 1 in figure), A is regarded as
the test set (darker grey) while the training set is composed by all the other subsets (lighter
grey). Thus, according to the supervised technique in use, a classifier is determined and
cases in A are classified. Then, in turn, each other group is taken as a test set (columns
ranging from 2 to 7) and the process is repeated, overall, 7 times. Eventually, each case
in X is classified and the predicted group can be compared with the actual one. The
technique ensure that the data employed in the training and test processes are separated;
nevertheless the training set is not as small as it would be by splitting the data set in two
parts.

tational age of the fetus, constituted the multivariate variable x (in the
following also called “16-Set”), which was used in the classification process.

4.6 Classification With Multivariate Methods

“Multivariate statistical analysis is concerned with data that consist of sets of
measurements on a number of individuals or objects” [Anderson, 1984]. The
subjects under analysis might be flowers, described by the length and color
of their petals or, as in our case, human fetuses characterized by variables
obtained by means of cardiotocographic equipments. The data set can be
represented by the matrices X (n×p), where n is the number of observations
(362 recordings) and p the number of variables (the 16 parameters computed

ations per hour, decelerations per hour and contractions per hour), time domain (T24(i)
mean, T24(i) standard deviation, LTI, Delta, STV and II), frequency domain (LF-power,
MF-power, HF-power and LF/(MF+HF)) and regularity parameters (approximate en-
tropy).
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on each recording). A single row of X may be though as an observation
extracted from a multivariate distribution.

Multivariate methods can be separated in two main groups: (i) those
methods that assume a given structure. They usually divide the observations
into g groups and specify to which of them each case belongs; (ii) those
methods that seek for discovering a possible structure in the data matrix, for
example, eventually obtaining a separation into groups [Venables and Ripley,
1999, chap. 11]. Following the typical terminology of pattern-recognition, the
first ones are called supervised methods and the second ones unsupervised. A
classical unsupervised method is cluster analysis, widely employed in social
sciences, where investigators are interested in finding the smallest number of
homogeneous groups (cluster) in which a certain population of individuals
or behavioral patterns can be rearranged.

On the other hand, supervised methods try to allocate future cases (for
example, future CTG recordings) to one of the g pre-specified classes in which
the current observations are collected. Discriminant analysis and neural net-
works are classical supervised techniques: current data are used to determine
the discriminant function or to train the network. Modern statistics refers
to the process of case allocating into predefined classes (medical diagnosis,
for example) as “classification” [Ripley, 1997].

Almost all classification methods can be seen as ways to approximate
an optimal classifier, the Bayes rule. Given a future case x, the classifier
finds the class k with the largest posterior probability p(k|x) and allocates
the case to this class (this is correct if all mis-classifications are considered
equally bad and we do not take into account the possibility of “doubt”
classifications). The posterior probability are learned from a training set,
a collection of examples, already classified (by experts or physicians, for
example) mimicking the way humans use to perform classifications by means
of comparison with some summary of past experiences. This approach, where
the estimated probabilities p(k|x) are used as true probabilities, is called the
plug-in approach and can result in over-fitting, by performing very well only
on the training set but not on any future cases. To avoid this problem, the
available data are usually split into two sub-set, a training and a test set.
The first one is used to estimate the classification model; the second acts as
a group of future cases and is classified with the model previously obtained.
In this way over-fitting is excluded (the second set was not employed when
the classifier was constructed) and a reliable estimation of the performances
of the classification process is achieved.

Several supervised techniques were applied on the parameters set com-
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Normal Pathological

Excluded Var. Cor.Max RCond Excluded Var. Cor.Max RCond

NONE - 1.69e-3 NONE - 1.77e-3
Delta 0.94 1.96e-3 Delta 0.94 4.08e-3
LF 0.92 4.35e-3 LF 0.91 6.65e-3

STV 0.90 6.50e-3 STV 0.89 1.31e-2
std 0.77 2.51e-2 MF 0.71 1.54e-2
MF 0.67 3.22e-2 std 0.65 3.26e-2
LTI 0.43 4.43e-2 LTI 0.51 4.64e-2

decelerations 0.39 4.76e-2 Gest. weeks 0.39 5.37e-2
Gest. weeks 0.34 5.17e-2 HF 0.35 8.02e-2
large acc. 0.32 8.79e-2 large acc. 0.20 1.23e-1

HF 0.28 1.11e-1 mean 0.16 1.40e-1
mean 0.15 1.21e-1 contractions 0.09 1.44e-1

II 0.05 1.47e-1 II 0.04 1.67e-1
contractions 0.00 1.65e-1 small acc. 0.03 1.85e-1
small acc. 0.00 2.02e-1 decelerations 0.00 2.24e-1

Tab. 4.3: Starting from the full set of parameters (16-Set), the correlation matri-
ces have been computed for both normal and pathological populations. The Linpack
reciprocal condition estimator for the full matrices is reported in the first row. Badly con-
ditioned matrices have “RCond” values near zero. In turn the more correlated variable has
been excluded from the set (having the largest correlation coefficient, “Cor.Max”, and the
largest sum of correlation coefficients) until only two variables remained [LF/(MF+HF)
and ApEn(1,0.2)]. The “RCond” value is always acceptable.

puted in section 4.5.2 and the results are reported below. As already stated,
the aim of this research was to develop an automated tool that could help
physicians in the diagnostic process. A classification technique, which is able
to classify with a sufficient precision a CTG recording, would certainly fulfill
our goal.

At first, 7 non overlapping subsets, of 50 recordings each, were randomly
chosen from the full set of 362 exams. Then, with each supervised method,
a 7-fold cross-validation technique was employed, using the same subsets
partition (12 exams never entered any test set, though they were always
contained in the training partition). This procedure ensures a fair com-
parison among different methods. The validation technique is described in
figure 4.4. Besides, the whole population was divided in two groups: normal
(labelled “1”), if the baby at delivery was regarded as N, and pathologi-
cal (labelled “2”) when the fetus was included in states H, IUGR, DG and
MACRO (pathological states were described in section 4.5.1).

A few standard statistical analysis were performed on the parameters
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Normal Pathological

Excluded Var. R2 Excluded Var. R2

STV 0.968 Delta 0.961
LF 0.959 LF 0.928

Delta 0.914 STV 0.896
std 0.907 std 0.801
MF 0.704 MF 0.728
LTI 0.670 ApEn(1, 0.2) 0.657

ApEn(1, 0.2) 0.619 LTI 0.604
large acc. 0.453 HF 0.483

Gest. weeks 0.272 Gest. weeks 0.289
small acc. 0.266 large acc. 0.159

HF 0.200 mean 0.086
contractions 0.075 LF/(MF+HF) 0.032

mean 0.028 contractions 0.011
LF/(MF+HF) 0.007 decelerations 0.002

II 0.001 II 5e−5

decelerations - small acc. -

Tab. 4.4: Starting from the full set of parameters (16-Set), in turn, a regression model
was constructed with response variable xi and explanatory variables the remaining indexes
xj (j 6= i). The parameter xi, better explained by the remaining variables (leading to the
model with the largest value of the R2 “goodness-of-fit” statistic), was then excluded; it
is reported in the first row of the table. The process was iterated until all the variables,
except one, were eliminated (as done in usual backward stepwise regression). Setting a
tolerance value (tv = 1−R2) of 0.3, approximatively 5 variables resulted redundant for a
linear model in both populations. Caveat: the table reflects the linear correlation in the
parameters; it becomes only a guideline for variables selection with a possible nonlinear
model.

set to verify the degree of linear dependence. As part of the computations
involved in several methods, the covariance matrix of the variables in the
model is inverted. Variables linearly dependent on the other ones would lead
to ill-conditioned matrices (characterized by very small condition numbers),
which can not be inverted. Moreover, completely redundant variables would
only make computations more complex.

From the analysis of the covariance matrix, reported in table 4.3, the
condition number resulted always acceptable. Also a backward stepwise
multi-regression was performed (see table 4.4), but at this stage we consid-
ered incorrect to exclude any variable (it would be acceptable if we were
considering only linear models. For an introduction to multivariate regres-
sion see [Everitt and Dunn, 1991, chap. 8]).
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LDA QDA LOGDA KNN1

(A)\(P) 1 2 1 2 1 2 1 2

1 132 65 124 73 132 65 96 101
2 86 67 93 60 86 67 81 72

Sens. 43.8 39.2 43.8 47.0
Spec. 67.0 63.0 67.0 48.7

Tab. 4.5: Statistical classifiers are compared on the 16-Set data. For each supervised
method a contingency matrix is reported: rows contain actual classes (A), while predicted
groups are in the columns (P); “1”≡ “normal”, “2” ≡ “pathologic”. Sensitivity (“Sens.”)
and specificity (“Spec.”) are also reported in %. For a definition see footnotes (16) and
(17).

4.6.1 Discriminant Analysis

Discriminant analysis is a classic parametric approach to discrimination.
Excluding neural network, it is, perhaps, the best known method of classifi-
cation. The decision regions, produced by the classifiers in the parameters
multidimensional space, have boundaries with very smooth surfaces.

Linear & Quadratic Discriminant Analysis

Linear discriminant analysis (LDA), as first derived by Fisher, does not
imply any normality of the multivariate probability distribution of the two
populations. Fisher’s idea was to find a linear combination of the variables
x having maximal squared difference between the two sample mean values
(divided by the pooled estimate of the variance of that difference) [Everitt
and Dunn, 1991, chap. 12]. The recording x is then associated to population
1 if (

x̄T1 − x̄T2
)
S−1

(
x− x̄1 − x̄2

2

)
> log

π2

π1
, (4.6)

and otherwise to population 2, where x̄1 and x̄2 are the sample mean values
in each population. S is the pooled within-group sample covariance matrix
given by S = (n1S1 +n2S2)/(n1 +n2) where n1 = 200 and n2 = 162 are the
populations sizes and S1 and S2 the group covariance matrices. If the two
classes are a priori equal likely (π1 = π2), then x is classified as coming from
the nearest class, in the sense of having the smallest Mahalanobis distance to
its mean (see also Ripley [1996a], for a complete description of the method
and numerical details).
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By making the assumption that the distribution of the vector x, be-
longing to the k class, is multivariate normal with mean µk and covariance
matrix Σ (all classes share the same covariance matrix Σ ≡ ΣK) the rule
in equation (4.6) can be re-derived from the classical Bayes rule [Ripley,
1996a]. On the other hand, by supposing a different covariance matrix ΣK

for each class, quadratic discriminant analysis (QDA) is obtained. With this
second classifier, the variable x is allocated to the class k that minimizes the
quantity

Qk ≡
1
2

log |Sk|+
1
2

(x− x̄k)
T S−1

k (x− x̄k)− log πk, (4.7)

Means and covariances have been substituted by their sample correspondent
values. The analysis is termed “quadratic” because Qk is a quadratic form
in x, while equation (4.6) is linear. The boundaries of the decision regions
are, respectively, quadratic and linear surfaces in the x space.

The results for the computations12, on the 16-Set data, are reported in
table 4.5. The prior probabilities for the two classes, π1 = 200/362 and
π2 = 162/362, were unknown and were extracted directly from each class
proportion. Both the classifiers perform very poorly13.

Logistic Discriminant Analysis

Making the assumption of two normally distributed classes with mean µk
and common covariance matrix Σ, posterior probabilities obey the log-linear
model

log
[

p(k = 1|x)
1− p(k = 1|x)

]
= α+ βTx (4.8)

usually known as logistic regression [Ripley, 1996a]. The recording x is
allocated to class 1 if p(k = 1|x) > 0.5, otherwise to class 2. The whole
classification process is called logistic discriminant analysis (LOGDA) and
it is usually used as a benchmark for more complex classifiers.

With the 16-Set data, the parameters α and β were computed by maxi-
mum likelihood using a generalized linear model approach [Everitt and Dunn,

12 Computations described in sections 4.6.1 and 4.6.2 were performed largely using rou-
tines present in the Mass library, developed by Venables and Ripley [1999], in the R
environment. R is a free system for statistical computation and graphics [Ihaka and Gen-
tleman, 1996], that can be found at www.r-project.org. Caveat: all the results were
obtained using a 7-fold cross-validation, as described in the previous section.

13 In both linear and quadratic discriminant analysis we used just a plug in approach.
Results obtained using a predictive rule [Venables and Ripley, 1999, sec. 11.4] do not show
statistically significant differences. They are not reported here.

file:www.r-project.org
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1991]. The estimation process is independent of the form assumed for the
class density function, so deviation from normality are less effective. The
results are reported in table 4.5: they provide a very poor classification.

Linear discriminant analysis can, also, be derived from the same hy-
pothesis supporting LOGDA; nevertheless the two estimates may give quite
different classifiers.

4.6.2 k-nearest neighbour classifiers

A typical non-parametric approach to classification is via k-nearest neigh-
bour classifiers (KNN). KNN is based on finding the k nearest vectors to
x (in correspondence to a definition of distance), in the parameters space,
and by taking a majority vote among the classes of these k points. The rule
is equivalent to estimate the posterior probability p(k|x), by the proportion
of the classes among the k examples [Venables and Ripley, 1999]. In both
KNN and LOGDA, the probability of the actual set p(x) is never computed,
as not needed for classification. In statistical science this is called diagnostic
approach [Ripley, 1996b], apposite to the sampling paradigm where p(x) is
obtained from sample values (as with LDA and QDA, for example).

In the computation we performed, several values of k have been tested.
We found the best choice to be k = 1 with a Euclidean measure of the
distances. Classification scores are reported in table 4.5.

4.6.3 Neural Networks

The classification approaches, attempted in the previous sections, weren’t
successful at all. Indeed, more powerful techniques, able to construct com-
plex decision regions in the parameters space, are needed. Thus, we decided
to employ a neural network [Ripley, 1996a; Hudson and Cohen, 2000].

As a first step, the original set, composed by 16 variables was reduced.
It is possible that a few variables were not relevant to the classification pro-
cess and were acting as noise; moreover, reducing the input variables would
also decrease the network training time, thus permitting a more accurate
estimation of the model parameters.

Unfortunately, a neural network is essentially a nonlinear system and
it does not allow to uniquely distinguish which parameters are less impor-
tant then the other ones inside the classification process. Therefore, several
different approaches were attempted. Most of them are relevant to the con-
struction of a linear model. Nevertheless they can give interesting insight
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Variable t-test p

Gest. weeks 0.016
Contractions 0.026
MF 0.062
Delta 0.070
LTI 0.077
LF 0.119
II 0.121
small accelerations 0.131
STV 0.139
ApEn(1,0.2) 0.636
std 0.653
large accelerations 0.654
decelerations 0.816
HF 0.827
mean 0.936
LF/(MF+HF) 0.980

Tab. 4.6: Normal and pathological fetal populations are compared by means of a t-test.
The null hypothesis: “the two populations (sampled from a normal distribution) have the
same mean” is tested for each variable. The significance levels are reported in ascending
order.

Added Variable F-test p F T2

Gest. weeks 0.016 5.83 5.83
II 0.009 4.79 9.62
LTI 0.007 4.06 12.23
std 0.002 4.33 17.48
LF 3.1e-4 4.76 24.09
ApEn(1,0.2) 3.0e-4 4.35 26.45
contractions 4.5e-4 3.87 27.53
large accelerations 6.8e-4 3.49 28.47
Delta 9.5e-4 3.21 29.53
decelerations 1.3e-3 2.97 30.50
MF 0.002 2.78 31.51
small accelerations 0.003 2.56 31.72
LF/(MF+HF) 0.005 2.38 31.98
HF 0.007 2.20 32.02
STV 0.012 2.06 32.09
mean 0.018 1.92 32.10

Tab. 4.7: Normal and pathological fetal populations are compared by means of a
stepwise multivariate F-test. The null hypothesis is “the two normal multivariate sets
have the same mean value”. At each step, the variable, which minimize the significance
level, is added to the set employed in the comparison. The added variable, the significance
level p, the F statistic and the Hotelling’s T2 statistic are reported in each line.
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Normal Pathological

Comp. % σ2 ∑
% σ2 Var. % σ2 ∑

% σ2 Var.

1 39.22 39.22 LF 38.85 38.85 LF
2 14.31 53.53 LF/(MF+HF) 13.73 52.58 LF/(MF+HF)
3 10.35 63.89 small acc. 8.40 60.98 mean
4 9.56 73.45 Gest. weeks 8.22 69.20 Gest. weeks
5 6.50 79.95 II 7.52 76.72 decelerations
6 5.11 85.06 mean 6.30 83.02 II
7 3.82 88.88 contractions 4.91 87.93 large acc.
8 3.43 92.31 decelerations 3.42 91.35 contractions
9 2.29 94.60 HF 2.45 93.80 std
10 1.80 96.40 ApEn(1,0.2) 2.01 95.81 HF
11 1.27 97.68 LTI 1.49 97.30 LTI
12 1.19 98.87 large acc. 1.14 98.45 MF
13 0.52 99.39 std 0.65 99.09 ApEn(1,0.2)
14 0.35 99.74 MF 0.48 99.57 STV
15 0.15 99.89 STV 0.28 99.85 Delta
16 0.11 100.00 Delta 0.15 100.00 small acc.

Tab. 4.8: Principal Component Analysis is performed on the 16 variables set charac-
terizing both normal and pathological population; each population is analyzed separately.
Every component is associated with the variable, not already chosen, which has the highest
coefficient in absolute value on that component [Everitt and Dunn, 1991]. “% σ2” is the
proportion of variance, “

∑
% σ2” is the cumulative proportion of variance and “Var.” is

the associated variable.

and a possible starting point in the variable selection process which must be
performed by successive experiments, anyhow.

• Mono-variate t-test (see table 4.6); for each single variable, two sets
were considered: xN and xP , which correspond, respectively, to normal
and pathological fetuses. A standard t-test was performed to determine
whether xN and xP (we supposed them sampled from normal distri-
butions, with unknown variances) could have the same mean value. A
standard F-test was preliminarily applied to compare the two variances
(significance level < 5%), then the suitable t-test was selected. The
technique aimed at verify with respect to which variable pathological
fetuses were separated from the normal ones.

• Multi-variate F-test (see table 4.7). The full 16-Set was separated
into two parts, XN and XP , corresponding to normal and pathologi-
cal fetuses, respectively. Initially only one parameter was considered.
In this case the multivariate F-test coincides with a classical t-test for
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two normal monovariate samples with common variances (the selection
process started from the variable “Gest. weeks” (gestational weeks),
showing the smaller p value in table 4.6). Then, at each step, the vari-
able, minimizing the significance level for a multivariate F-test [Everitt
and Dunn, 1991], was added to the set employed in the comparison, un-
til the full 16-dimensional set was obtained again. Multivariate mean
values were always significantly different and the minimum p value was
obtained by taking into account 5 or 6 variables.

• Principal Component Analysis (PCA) (see table 4.8); PCA [Everitt
and Dunn, 1991] was performed on the two matrices XN and XP , sep-
arately. Correlation matrices were used. Every component was then
associated with the variable, not chosen already, which had the high-
est coefficient in term of absolute value for that component. Principal
components analysis is one of the most classical multivariate statis-
tical method. It seeks new variables, which are rotations of the old
parameters, to better explain variation in the data set (in the rotated
space, the new correlation matrix is diagonal). The components are
orthogonal and each one is responsible for a proportion of the global
variance. With the 16-Set data, only 5-6 components were sufficient
to explain ≈ 80% of the variance.

• In a recent study [Paglione, 2000]), performed on the same data set (16-
Set) at the “Università di Pavia14”, an ANFIS (Adaptive Neuro-Fuzzy
Inference System) classifier (Sugeno-type)15 was considered. In the
work the sensitivity of the classification process to each considered pa-
rameters was analyzed and six variables were retained (decelerations,
large accelerations, small accelerations, (LF/MF+HF), ApEn(1,0.2)
and gestational age); unfortunately, as two different validation pro-
cesses were employed, is quite impossible a comparison with the results
presented in this chapter).

By combining all the collected information together, the original param-
eter set was reduced to a new one composed by 5 variables only (5-Set):

14 The institution is a member of the joint research project.
15 The parameters of the membership function (only linear or constant for Sugeno-type

inference system) are tuned using a backpropagation algorithm. ANFIS systems, like
neural network, “learn” from the data.
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computed on the
whole signal

{
(1) large accelerations per hour
(2) small accelerations per hour

computed on each
3-minutes SQ-segments


(3) LTI (ms)
(4) LF/(MF+HF)
(5) ApEn(1, 0.2)

Subsequently, a static neural network (NN), which had considered the
5-Set as input, was constructed. Three layers had been employed, composed
by 12, 8 and 1 neurons, respectively. The transfer function used for each
neuron was the hyperbolic tangent sigmoid y = 2/[1 + exp(−2x)] − 1; the
output of the network was quantized in two values, with a static threshold
set at zero (−1 ≡ “pathological” and 1 ≡ “normal”).

Input CTG parameters in each training sets and the corresponding actual
output groups were used to train the network (up to 30000 training epochs),
until an acceptable error goal was achieved (a back-propagation algorithm
was employed).

The classification performances of the NN are reported in table 4.9. The
classifiers described in sections 4.6.1 and 4.6.2 were also computed on the
reduced set. The NN performed better then any other technique which
has been evaluated in this work, showing a 20% misclassification rate and
an appreciable sensitivity16 and specificity17, both reaching approximatively
80%.

4.7 Discussion

At the present, automated methods have limited clinical application in car-
diotocography. A relevant amount of this unsatisfactory performance resides
on the weakness of methods used for classifying fetal condition generating
risk alarms during pregnancy. Moreover, even if variability became an in-
tegral part in fetal evaluation, from the clinical point of view the lack of
standardization makes any comparison very difficult. Often, researchers use
different numerical expressions for indexes sharing the same name. In the
present chapter we tried to move a step forward towards an automated CTG

16 Sensitivity or “true positive rate” is the probability that the test is positive given
that the person has the disease.

17 Specificity or “true negative rate” is the probability that the test is negative given
that the person does not have the disease.
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5-Set 16-Set
Misclas. Rate Sensitivity Specificity Misclas. Rate

LDA 48.9 18.3 76.6 43.1
QDA 48.3 52.3 51.3 47.4
LOGDA 49.1 19.0 75.6 43.1
KNN1 46.0 46.4 59.9 52.0

NNET 20.0 76.1 83.3 -

Tab. 4.9: The five classification techniques employed on the FHR dataset are com-
pared. Two sets of variables are considered: 16-Set, the full one, and 5-Set, the reduced
set suggested in section 4.6.3. A 7-fold cross-validation technique has been employed;
for the neural network (12+8+1 neurons with hyperbolic tangent transfer function, see
section 4.6.3), at each classification step, the previous network has been used as a start-
ing point. Only the feed-forward neural network is able to separate normal fetuses from
pathological ones.

risk alerts generator, that might help the physician in drawing the final di-
agnosis. The work was performed on two different levels.

In first place, parameters selection was conducted with large attention,
by comparing the different definitions in literature and by clearly stating
any modification introduced in the numerical procedures. New algorithms
were developed for toco signal analysis, to improve robustness during clinical
usage. Also, FHR signal quality assessment was considered essential. Nu-
merical indexes were computed on short 3 minutes windows and averaged to
reduce intraindividual variability.

Classical supervised classifiers fail to distinguish pathological and nor-
mal fetuses. It may be possible that the normality hypothesis, required by
quadratic discriminant analysis (DA) and logistic DA, is not appropriate for
a few variables composing the parameter set.

The poor value of the true classification rates obtained also with linear
DA, probably suggest that the two populations lie in very convoluted and
intermingled regions in the parameters space. Direct inspection of the data
set confirmed such assumptions. Therefore, only methods able to shape very
complex decision regions are eligible to succeed.

The proposed feed forward network achieved a 80% true classifications
rate with sufficient high sensitivity and specificity. We acknowledge that the
method is still not suitable for a direct usage in the clinical environment.
Nevertheless the approach is promising, and, in addition, it was achieved by
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an automatic procedure.
The use of an even larger data set and a classification performed on po-

tential pathological states basis (with a different group for each pathological
state), are only a few among the possible future improvements.





5. DISCUSSION & CONCLUSIONS

In this concluding chapter, the results, obtained during the thesis work, are
summarized. Sections dedicated to discussion are also contained in chap-
ters 2 and 3, respectively; we refer to them for specific results. Here, we
want simply to summarize the main topics of the work and the view is more
general.

The thesis was mainly focused on the study of the mechanisms which
generate heart rate variability. The RR signal reflects, partially, the char-
acteristics of the cardiovascular system by which is modulated; at the same
time, it is indirectly influenced by several others physiological subsystems,
acting on different time scales. The focus of the work was set on the com-
plexity of HRV signal, and it was not devoted to any particular method.

Two main complementary approaches have been chosen: multifractal
and multivariate analysis.

In the introduction, we sketched two main questions, which the thesis was
meant to face. The first issue dealt with the possible nonlinear nature of the
HRV signal and the general debate inside the scientific community about the
topic. We underlined the widespread convincement that deterministic chaos
may be proved, by means of time series methods, only when the natural or
laboratory system under analysis is in controlled conditions and a reasonable
model is available (the latter is a sufficient, but not necessary, proposition).
All the other situations must be considered on the basis of each singular case
after applying the most robust methods available in literature (to be sure
that the results are reasonably verified). Certainly it is worth reminding that
often it is possible neither to demonstrate the nonlinear nature of the system,
nor to disprove it. The analysis fells in a Gödel-like logic contradiction, where
tertium datum est.

In chapter 3, we tested the nonlinear hypothesis by means of generalized
structure functions. The method was developed in the study of fully devel-
oped turbulence and leads to the computation of a multifractal spectrum,
hq; when the hq values decrease with the order q, the process is multifractal;
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thus a decreasing spectrum might be associated with the presence of nonlin-
ear correlations in the signal, and possibly, with the nonlinear nature of the
HRV signal. We found that most of the series in the Noltisalis data base
showed a multifractal-like behaviour.

When working with RR series, the sufficient proposition recalled above
is useless. The two requirements can not both be fulfilled: too many mecha-
nisms are modulating the interbeat signal over long time scale to be able to
construct a complete model. Moreover, extended time series would be nec-
essary but it is difficult to maintain controlled conditions for long periods of
time.

Therefor, it is necessary to proceed by a subtractive logical approach
only, reducing the number of possible hypotheses. In order to do so, we
applied several classical time series methods. We verified that the distribu-
tion of the incremental signal I∆(i) = RR(i + 1) − RR(i) is not normal,
but displays very long tails (in fact, we found the best fitting distribution to
be a Lévy stable). Heavy tails are typical of anomalous mixing in turbulent
fluids and other nonlinear processes [Mandelbrot, 1983]. We investigated the
chance of spurious multi-fractality, due only to nonlinearly filtered colored
noise, through a surrogate data technique (amplitude-adjusted fourier trans-
form with iterative refinement). 32 over 50 hq spectra resulted statistically
different (p < 0.01) from their surrogate. This findings would support the
thesis of multifractal RR series. Unfortunately, the values we obtained for
the hq exponents were small, thus non-stationarity effects could have played
a relevant role. To further verify the non-stationarity influence, we also
applied the wavelet-transform modulus-maxima method, which should elim-
inate polynomial trends from data. Also the latter methods did not allow a
rejection of the hypothesis that the process underlying HRV is nonlinear.

In summary, the various methods employed did not contradict the state-
ment that the RR series is generated by a nonlinear process. On the other
hand, it is not possible to state with absolute certainty that the process is
nonlinear, either. The question is still open, and we are confident that the
followed path is correct and fruitful. Surely, some of the presented results
are noteworthy and significant from a methodological point of view. For
example, the multifractal exponents, when used simply as statistical indexes
to discriminate between healthy and cardiac-diseased patients, performed
better than any other considered methods. We retain this an evidence that
new properties of the signal are taken into account and exploited.

Certainly, a formalistic approach and the study of basic issues, as the
nature of the cardiovascular control system, are fundamental and intriguing.
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But then, from a bioengineering point of view, it is necessary to move fur-
ther. Even if the theoretical framework is not, still, completely clear (and
it remains unclear, even after many distinguished efforts) useful statistical
results should not be discarded but deeply analyzed and interpreted. An
example will make clear this “pragmatic” statement. Approximate entropy
(ApEn) is certainly connected with the Kolmogorov-Sinai entropy (KS), but
while the latter has a clear theoretical derivation, the first one is not more
than a statistical regularity index. But, KS is not well defined on time se-
ries; on the contrary ApEn, can be easily calculated and proved to be very
effective in discrimination tasks. Should ApEn not be taken into account?
For sure, it i’s useless to make statements around the nonlinear nature of the
process (it is only a vaguely approximation of KS). Conversely, we retain,
it should be employed as a statistic index able to distinguish signals among
them, on a regularity basis, as ApEn demonstrated a great efficiency on this.

The second question, which was addressed in the thesis, is about the
opportunity to use variability indexes with a diagnostic purpose. Among
the several possibilities, in chapter 4, we opted for multivariate analysis. We
do not consider a single parameter at a time, but a set of variables was used
to distinguish healthy from potentially pathological fetuses.

We analyzed 362 cardiotocographical recordings; the Holter signals used
in chapter 3 were, in fact, numerically not sufficient to achieve statistical
confidence. The nonlinear hypothesis about the nature of the RR series
was not disproved, it is possible that nonlinearity are present, also, in the
fetus cardiovascular system. ApEn was preferred to the multifractal spec-
trum: the latter can not be computed, because it is impossible to obtain long
enough signals. Moreover, the regularity of a process is highly influenced by
nonlinear correlations. Besides ApEn, other 15 variables were taken into ac-
count: classical time domain indexes, morphological parameters and spectral
components.

Classical statistical classifiers (linear, quadratic and logistic discriminant
analysis) and a nonparametric approach (k-nearest neighbour classifiers)
were compared with a feed-forward neural network. Only the latter was
able to draw complex enough decision regions, in the parameters space. The
developed neural network correctly allocated, approximatively, 80% of the
considered exams, with discrete sensitivity and specificity (also ≈ 80%).

We are aware that the method still needs further work and tuning, es-
pecially if the aim is to develop a device which must be actually used in
the clinical environment; nevertheless, the approach is really promising and
certainly more performing than any other technique, today available in car-
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diotocography.
Even if 362 recording are a lot, to further increase the statistical robust-

ness of the classification process, an even larger number of cases would be
positive. For this reason, the research project is still making an effort to
collect new recordings to reach a more clinically significant sample. Another
future refinement will be the use of adaptive neuro-fuzzy classifiers and the
construction of a new neural network to decrease the number of misclassifica-
tions and increase both sensitivity and specificity. The set of 16 parameters
described in chapter 4, has been recognized worthy to be implemented in a
commercial cardiotocographic monitor, develop by Agilent Technologies and
now in prototypal stage. The monitor will be provided also with the classifi-
cation routines when the precision achieved will be considered sufficient for
a clinical use. The numerical libraries, which we wrote and employed during
the thesis work, constitute the kernel of the monitoring software.

Regarding the work on the Noltisalis database, a further development
could concern the analysis of very long RR series recorded from patients
in controlled conditions (for example, normal subjects lying in bed at con-
trolled temperature for several hours). Diminishing the external stimuli, the
non-stationarity present in the data should decrease. Interesting would be
to verify the differences arising from the results obtained with multifractal
analysis in this thesis and with the new set of data; would the multifractal
exponents increase in absolute value?
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A. LÉVY STABLE DISTRIBUTION

Consider N mutually independent random variables Xk with common dis-
tribution FX(x). FX is called stable if, whatever N , does exist two values
c∗N > 0 and ζN such that

c1X1 + c2X2 + ...+ cNXN = c∗NX + ζN (A.1)

where ck are real numbers; besides, FX is said stable in strict sense if ζN = 0.
Feller [1971] proved that, if ck = 1 for each k, then c∗N = N1/α with

0 < α ≤ 2; α is said the characteristic exponent for FX . A strictly stable
distribution is fractal in nature, as the sum of N independent variables ex-
tracted from it looks exactly the same as a single variables1, once adjusted
by a scale factor c∗N .

The theory of random variables was formalized by Lévy [1937] (see also
[Mantegna, 1991]); among other results, he showed that the family of sym-
metrical distributions

fX(x, α, γ) =
1
π

∫ +∞

0
e−γq

α
cos(qx)dq (A.2)

defines all the stable symmetrical distributions which solve the functional
equation (A.1) combined with the auxiliary relation

cα = cα1 + cα2 + ...+ cαN .

1 it is possible to derive a generalization of the box-counting dimension for a random
variable X extracted from a strictly stable distribution D. X is equivalent to the sum of
N random variables extracted from the same distribution and scaled by ck = 1/c∗N , that is
Xk/c

∗
N . The number of variables necessary to cover X, N, is proportional to the diameter,

εN = 1/c∗N , so that N = ε−D
N , where D is the dimension. It follows that

D = lim
N→∞

− log(N)

log(εN )
= lim

N→∞

log(N)

log(N1/α)
= α.
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The value α ∈ (0, 2] is the characteristic exponent and γ > 0 a scaling
constant; such distributions are called, after Lévy, Lévy stable distributions.
The density fX can be obtained as inverse Fourier transform of the function
e−γ|q|

α
often called characteristic function; in fact

fX(x, α, γ) =
1
2π

∫ +∞

−∞
e−γ|q|

α
cos(qx)dq

=
1
2π

∫ +∞

−∞
e−γ|q|

α
cos(qx)dq + i

1
2π

∫ +∞

−∞
e−γ|q|

α
sin(qx)dq

=
1
2π

∫ +∞

−∞
e−γ|q|

α
eiqxdq = F−1

{
e−γ|q|

α
}

The density has analytical form only for α = 1, 3/2 and 2; in x = 0

fX(0, α, γ) =
γ−

1
α

πα
Γ
(

1
α

)
, (A.3)

where Γ(t) =
∫ +∞
0 xt−1e−xdx is the Gamma function. The cumulative dis-

tribution function can be obtained switching the order of the integrations in
(A.2)

FX = P [X ≥ x] =
1
2

+
1
π

∫ +∞

0
e−γq

α sin(qx)
q

dq, (A.4)

The moment generating function (see [Mandelbrot, 1977]) is for the Lévy
distribution2

mfX
(t) = e−γ|t|

α
. (A.5)

The first moment is finite (E[X]=0) for 1 < α ≤ 2 while the second only for
α = 2 (E[X2] = 2γ). All superior moments are infinite.

The Cauchy (Lorentzian) and the Gaussian distribution are particular
case of Lévy stable distribution. In fact with α = 1

fX(x, 1, γ) =
γ

π

1
γ2 + x2

2 At this purpose it is useful to change the usual definition of the moment generating
function in

mfX (t) = E[eixt],

the rth moment can be obtained with the formula

E[Xr] = (i)−r lim
t→0

drmfX (t)

dtr
.
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α Φ−1(1) Φ−1(2) Φ−1(3)

1.00 0.92 6.98 117.91
1.20 0.92 4.63 47.63
1.40 0.94 3.40 23.92
1.60 0.96 2.65 13.33
1.80 0.98 2.21 7.31
2.00 1.00 2.00 3.00

Tab. A.1: Confidence intervals of zero for the standardized variable x̄. Φ−1(x̄) is the
inverse of the standard normal cumulative distribution function. Values are expressed in
standardized dispersion σ̄L.

which is a Cauchy distribution; instead, setting α = 2, it is possible to obtain
the Gaussian distribution

fX(x, 2, γ) =
1

2
√
πγ

exp
(
−x2

4γ

)
=

1√
2π
√

2γ
exp

(
−x2

2(
√

2γ)2

)
with standard deviation σ =

√
2γ; the normal is the only stable distribution

with finite second moment.
A scaling parameter, that can be considered the extension of the standard

deviation to stable distributions, is the dispersion σL = [2γ](1/α). With the
change of variable x̄ = x/σL it can be obtained the standardized Lévy density

fX̄(x̄, α, 1/2) =
1
π

∫ +∞

0
e−(1/2)qα

cos(qx̄)dq,

with γ̄ = 1/2 and σ̄L = 1, very useful in calculation. A few confidence inter-
vals of zero for the standardized variable x̄ are reported in table A.1; they
correspond to probability levels frequently used: Φ−1(1), Φ−1(2) and Φ−1(3),
where Φ−1(x̄) is the inverse of the standard normal cumulative distribution
function (≈ 68.3%, ≈ 95.5% and ≈ 99.7% respectively). With small values
of α the confidence intervals becomes incredibly large, accounting the long
tails in the density.





B. THE KURAMOTO MODEL

B.1 Introduction

Mutual synchronization is a common phenomenon in biology. It occurs at
different levels, ranging from the small scale of the cardiac pace-maker cells of
the SA (sinoatrial) and AV (atrioventricular) nodes in the human hearth that
synchronously fire and give the pace to the whole muscle, to the coordinated
behaviours of crickets that chirp in unison and of fireflies that flash together
in some parts of southeast Asia.

Winfree [1967] was the first to underline the generality of the problem,
fixing the first assumptions for a mathematical model. In his work each
oscillating species (cell, or cricket, or firefly) is modeled as a nonlinear oscil-
lator with a globally attracting limit cycle; The oscillators were assumed to
be weakly coupled and their natural frequencies to be randomly distributed
across the population.

Kuramoto [1975] proposed the first model (called for this reason the
Kuramoto model). His assumptions were that each oscillator is equal to
the others, upto the frequency and phase, that the system has a mean field
coupling and that the amplitudes of the oscillations are all the same (phase-
only model). The equation of the model for the n oscillator (regarding its
phase φ) is:

dθn
dt

= ωn +
K

N

N∑
j=1

sin(θj − θn) + ξn, (B.1)

where K is the coupling strength, ωn is a random variable with probability
density function g(ω) and ξn is white noise.

Defining as order parameter the complex number,

reiψ =

∑N
j=1 e

iθj

N
, (B.2)



120 B. The Kuramoto Model

it is possible to measure the synchronization among the oscillators phases:
r = 0 corresponds to the completely incoherent state, finite r to synchro-
nization.

Kuramoto determined that r = 0 is always a steady solution; but there
exists, in the case of no added random noise, a critical value of the coupling
parameter Kc = 2/[πg(0)] below which only incoherent populations exist
(r = 0). For K > Kc a population of synchronized oscillators can exist
(r > 0).

The results of the numerical simulations, performed solving equation
(B.1) with N = 256 and two different values of the coupling parameter
K, are shown in figure B.1; in the upper panels the time evolution of the
discrete probability density function1 is plotted; in the lower panels, the
time evolution of the order parameter is displayed. The initial condition is,
in both cases, a population of oscillators with phases uniformly distributed
in [0, 2π] and slightly perturbed.

When K = 0.8 > Kc (Kc = 0.739), in a very short time, the phases
of the oscillators gather together in a small range of angles and then begin
drifting coherently. The order parameter grows quickly and exhibits small
oscillations due to the random noise added to the system.

A different situation arises with K = 0.65 < Kc; a coherent behaviour
never starts, even if small structures can be noticed: small population of
oscillators synchronize and drift for short periods of time. This is reflected
in the order parameter that oscillates between 0 and 0.3 and decreases only
slowly.

B.1.1 A continuous model

Using the approach sketched in the previous paragraph, it is difficult to go
much farther; it is not easy, for example, to answer questions such as “Is the
coherent state (K > Kc) stable?”

Strogatz and Mirollo [1991] introduced a partial differential equation that
describes the behaviour of the Kuramoto model in the limit N →∞.

The idea is that, in the continuous limit, the state is described by a prob-
ability density function: ρ(θ, ω, t). The Kuramoto equation (B.1) becomes:

v = ω +K

∫ ∞

−∞

∫ 2π

0
sin(φ− θ)ρ(φ, ω, t)g(ω)dφdω, (B.3)

1 The θ axis is divided into 64 intervals and, at each instant of time, the normalized
histogram of the phases of the oscillators is computed.
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Fig. B.1: Numerical simulations on the discrete Kuramoto model with N = 256,
D = 0.01, K = 0.65 ≈ 0.9Kc (panel a and c) and K = 0.8 ≈ 1.1Kc (panel b and d). (panel
a and b): time evolution of the probability density function computed on the trajectories
of the system splitting up the θ axe in sub-intervals; (panel c and d): time evolution of the
absolute value of the order parameter. The initial condition is a population of oscillators
with phases chosen in [0, 2π] according to the distribution ρ(θ, ω, 0) = 1/(2π)+4ξ/[π(ω2 +
4)] with ξ = 0.1. The natural frequencies ωn are selected from the probability distribution
g(ω) = (1− ω2)/[(π − 2)(1 + ω2)] with |ω| < 1.
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where v is the velocity at the point (θ, ω, t). Moreover, the density function
ρ has to satisfy, for each given ω, a normalization law∫ 2π

0
ρdθ = 1; (B.4)

and a Fokker-Plank-type conservation law 2

∂

∂t
ρ(θ, ω, t) +

∂

∂θ
[ρ(θ, ω, t)v(θ, ω t)] = D

∂2

∂θ2
ρ(θ, ω, t), (B.5)

where θ ∈ [0; 2π] and ω ∈ [−∞;∞].
The order parameter (B.2), in the continuous limit, becomes:

reiψ =
∫ ∞

−∞

∫ 2π

0
eiθρ(θ, ω, t)g(ω)dθdω. (B.6)

The continuous model permits further analysis on the system; first of all
the computation of the stability threshold for a wider number of cases. An
in depth description of the topic, is provided by [Balmforth and Sassi, 2000;
Sassi, 2000].

In chapter 1, the physiology of the myocardial cells was discussed. The
electrical activity of the heart starts in the sinoatrial node. Pacemaker cells
are autonomous oscillators and they do not need any external current to
depolarize. On the other hand, they must fire synchronously (with the same

2 The derivation of the two equations has the flavor of the BBGKY hierarchy in plasma
physics and can be found in [Crawford and Davies, 1999]. Some rationalization of equa-
tion (B.5) can be given on recollecting that because the probability is conserved,

∂

∂t

∫ θ2

θ1

ρ(θ)dθ = ρ(θ1)v(θ1)− ρ(θ2)v(θ2)

= −
∫ θ2

θ1

∂

∂θ
(ρv)dθ

ρt = − ∂

∂θ
(ρv),

and on remembering Einstein’s derivation of the diffusion equation in his work on the
explanation of the Brownian motion [Einstein, 1985], which indicates that

ρt = 2〈ξ2〉ρθθ

= Dρθθ
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phase in the periodical firing cycle) to produce a coherent pacing signal for
the rest of the muscular tissue.

Making the assumptions that (i) the number of nodal cell is small, thus
the coupling among them can be described by a mean field interaction, (ii)
each cell activity can be modelled with a nonlinear oscillator (see note (2)
in chapter 1), the Kuramoto model is a possible description of the dynamic
of the group of cells. It gives an account of the transition to synchrony and
allows to compute how strong must be the interaction among oscillators to
produce a coherent behaviour.

In pacemaker cells, like in figure B.1(b), the cells phase-synchronize
around the mean natural frequency. Fortunately, the coupling is strong
enough. But if it decreases under a critical threshold (in pathological con-
dition for example), synchronization is lost and, as in figure B.1(a), the
capability of the node to excite the heart is highly reduced.





C. NOTES ON APPROXIMATE ENTROPY
COMPUTATION

Approximate entropy (ApEn) is a statistics quantifying regularity in a time
series [Pincus, 1991]. The definition was reported in section 2.5 and the same
terminology will be employed in this brief appendix.

Writing a computer code to compute ApEn from the definition is straight-
forward; unfortunately, for a series of length N , the computational complex-
ity scales as N2. Therefore, the time necessary to perform the numerics
increases quadratically with the number of points in the signal. Approxi-
mate entropy is often employed to measure regularity with very long RR
series (N > 20000); in all these situations, a fast algorithm is critical.

The crucial point in any ApEn computer code is the computation of the
kernels Ci(m, r) and Ci(m + 1, r), which requires a few multiplications but
a large amount of comparisons between couples of floating point numbers.
Proceeding from the definition,

M1 = m
(N −m+ 1)(N −m)

2
+ (m+ 1)

(N −m)(N −m− 1)
2

comparisons seem necessary, but Fabani and Sassi [1996] showed that this
value can be reduced to

M2 =
N(N − 1)

2
− m(m− 1)

2

which corresponds to compare each point ui with, at most, all the others uj .
In this appendix we will show how it is possible to reduce the computational
complexity below M2.

Common practise is to use a value of the parameter r which is propor-
tional to the standard deviation σ of the signal. This is very useful when
comparing signals with different powers, and it is equivalent to normalize
the series with respect to σ. Suppose that the process u is a white Gaussian
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 1
2 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1
3 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1
4 1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 1
5 1 1 1 0 1 1 0 0 1 0 0 0 0 1 0 1
6 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0
7 1 1 0 1 0 0 0 1 1 1 1 0 0 1
8 1 1 0 0 0 0 0 0 1 1 0 0 1
9 1 1 0 0 1 1 0 1 1 1 1 0

10 1 1 0 0 0 1 0 0 0 0 1
11 1 0 0 1 0 1 1 1 1 0
12 1 0 1 1 1 0 1 1 0
13 1 1 1 1 1 0 1 1
14 1 0 0 0 0 1 1
15 1 1 1 1 1 0
16 1 0 0 1 1
17 1 1 1 1
18 1 1 0
19 1 0
20 1

i \ j

Fig. C.1: The comparisons involved in ApEn computation can be illustrated as com-
posing a symmetrical matrix; only a few rows are plotted while the lower half of the matrix
is symmetrical and not reported. Each ui is compared with each uj (i varies with rows,
while j with columns): 1 indicates that the two number are closes enough (|ui − uj | ≤ r);
0 that they are different, at the current r level. Further details are presented in the text.

noise d= N(0, 1); it is straightforward to compute the probability that two
points ui and uj are closer than r

P (|ui − uj | ≤ r) =
∫ r

r

1
2
√
π
e−x

2/4 dx.

For example, with r = 0.2 (a very recurrent value), P = 0.112. Thus, in this
case, only about 11% of the comparisons affect the values of the kernels.

With a more correlated series the value of P would have been bigger, but
generally P � 1 and skipping all the useless comparisons, we would end with
an algorithm making only M3 ≈ PM2 operations. This is the main idea
underlying the algorithm we developed, which is composed, schematically,
by the following steps (we describe only the computation of the kernels
Oi(m, r)):

a. Preliminarily, an ordered copy w of the signal u is built with a quick-sort
algorithm, which is computationally proportional to N log2N .

Then for each point wi, two indexes are calculated: jmin < i and jmax >
i. On the ordered sequence, jmin is the smallest value of j for which
wj > wi− r; jmax is the largest value of j for which wj < wi+ r. Outside
the interval jmin < i < jmax, comparisons are useless.

The two limiting indexes are computed using a fast bisection method, so
that the number of comparisons required is proportional to 2N log2N .
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b. The series w is ordered back to the original sequence u, just to construct
two indexes maps: is = h(io) and io = H(is). Calling io the original
position of the point ui in the series u and is its position in the sorted w,
the two maps are used to relate one series to the other without sorting
anymore.

c. Finally the core routine is entered:

i. Let’s start from u1. Only the wj points with jmin < j < jmax must
be considered; thus, for each of these j a corresponding k = H(j) is
computed. Then the comparisons are performed along the diagonals:
u2 is compared with uk+1, u3 with uk+2 and so on, until a comparison
fails. The process is schematically illustrated in figure C.1. Supposing
k = 11, the couples of points compared are (u2, u12), (u3, u13) and
(u4, u14); they are reported in figure with bold red numbers.

ii. According to the values of m we are interested in, the opportune
kernelsOi(m, r) must be increased. In the example, supposingm = 2,
O1(2, r), O2(2, r), O3(2, r) and, correspondingly, O11(2, r), O12(2, r),
O13(2, r) should be increased by one unit.

iii. The process is repeated for each point ui; duplicated comparisons
must be avoided (in figure, for u2, valid values of k are only 5 and 17,
marked with bold blue numbers. The others were already considered
with u1).

The main routine performs only “true” comparisons. They corresponds
to the probability P , computed in the WGN case.

Overall, kernels computation requires M3 ≈ PM2 + 4N log2N compar-
isons. The described routine was employed to compute approximate entropy
both in chapters 3 and 4 and proved to be very effective. In average, it was
approximatively 5 − 10 times faster than the code reported in [Fabani and
Sassi, 1996, app. D].
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